Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (11): 2083-2091    DOI: 10.1016/S2095-3119(13)60505-5
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum
 LIU Yi-peng, LIN Ke-jian, LIU Yang, GUI Fu-rong , WANG Gui-rong
1.State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193, P.R.China
2.College of Plant Protection, Yunnan Agricultural University, Yunnan 650201, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by five subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identified and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression profiles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.

Abstract  The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by five subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identified and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression profiles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.
Keywords:  Acyrthosiphon pisum       nicotinic acetylcholine receptor       alternative splicing       expression profile  
Received: 08 January 2013   Accepted:
Fund: 

This work was supported by the National 973 Program of China (2012CB114104) and the Beijing Natural Science Foundation, China (6132028).

Corresponding Authors:  Correspondence WANG Gui-rong, Tel: +86-10-62816247, E-mail: grwang@ippcaas.cn     E-mail:  grwang@ippcaas.cn
About author:  LIU Yi-peng, Mobile: 18600214711, E-mail: liuyipenglyp@126.com

Cite this article: 

LIU Yi-peng, LIN Ke-jian, LIU Yang, GUI Fu-rong , WANG Gui-rong. 2013. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum. Journal of Integrative Agriculture, 12(11): 2083-2091.

[1]Altschul S F, Gish W, Miller W, Myers E W, Lipman DJ. 1990. Basic local alignment search tool. Journal ofMoleular Biology, 215, 403-410

[2]Cascio M. 2004. Structure and function of the glycinereceptor and related nicotinicoid receptors. Journal ofBiological Chemistry, 279, 19383-19386

[3]Dale R P, Jones A K, Tamborindeguy C, Davies T G E,Amey J S, Williamson S, Wolstenholme A, FieldL, Williamson M S, Walsh T K, Sattelle D B. 2010.Identification of ion channel genes in the Acyrthosiphonpisum genome. Insect Molecular Biology, 19(Suppl. 2),141-153

[4]Elbert A N R, Cahill M, Devonshire A L, Scarr A W, SoneS, Steffens R. 1996. Resistance management withchloronicotinyl insecticides using imidacloprid as anexample. Pflanzen-Nachrich Bayer, 49, 5-53

[5]Grauso M, Reenan R A, Culetto E, Sattelle D B. 2002.Novel putative nicotinic acetylcholine receptor subunitgenes, Dalpha5, Dalpha6 and Dalpha7, in Drosophilamelanogaster identify a new and highly conserved targetof adenosine deaminase acting on RNA-mediated A-to-Ipre-mRNA editing. Genetics, 160, 1519-1533

[6]Hofmann K W S. 1993. TMbase - a database of membranespanning proteins segments. Biological ChemistryHoppe-Seyler, 374, 166.Jones A K, Brown L A, Sattelle D B. 2007. Insect nicotinicacetylcholine receptor gene families: from geneticmodel organism to vector, pest and beneficial species.Invertebrate Neuroscience, 7, 67-73

[7]Jones A K, Grauso M, Sattelle D B. 2005. The nicotinicacetylcholine receptor gene family of the malariamosquito, Anopheles gambiae. Genomics, 85, 176-187

[8]Jones A K, Raymond-Delpech V, Thany S H, Gauthier M,Sattelle D B. 2006. The nicotinic acetylcholine receptorgene family of the honey bee, Apis mellifera. GenomeResearch, 16, 1422-1430

[9]Jones A K, Sattelle D B. 2004. Functional genomics ofthe nicotinic acetylcholine receptor gene family of thenematode, Caenorhabditis elegans. Bioessays, 26, 39-49

[10]Jones A K, Sattelle D B. 2010. Diversity of insectnicotinic acetylcholine receptor subunits. Advances inExperimental Medicine and Biology, 683, 25-43

[11]Jones A K, Sattelle D B. 2007. The cys-loop ligand-gatedion channel gene superfamily of the red flour beetle,Tribolium castaneum. BMC Genomics, 8, 327.Kao P N, Karlin A. 1986. Acetylcholine receptor bindingsite contains a disulfide cross-link between adjacent halfcystinylresidues. Journal of Biological Chemistry, 261,8085-8088

[12]Lansdell S J, Millar N S. 2000. Cloning and heterologousexpression of Dalpha4, a Drosophila neuronal nicotinicacetylcholine receptor subunit: identification of analternative exon influencing the efficiency of subunitassembly. Neuropharmacology, 39, 2604-2614

[13]Lee D, O’Dowd D K. 1999. Fast excitatory synaptic transmissionmediated by nicotinic acetylcholine receptors inDrosophila neurons. Journal of Neuroscience, 19, 5311-5321

[14]Li F H Z. 2005. Alternative splicing, multiple transcriptioninitiation sites of nicotinic acetylcholine receptorsubunits from the cotton aphid Aphis gossypii. ActaZoologica Sinica, 51, 867-878

[15]Littleton J T, Ganetzky B. 2000. Ion channels and synapticorganization: analysis of the Drosophila genome.Neuron, 26, 35-43

[16]Liu Z, Han Z, Liu S, Zhang Y, Song F, Yao X, Gu J.2008. Amino acids outside of the loops that define theagonist binding site are important for ligand bindingto insect nicotinic acetylcholine receptors. Journal ofNeurochemistry, 106, 224-230

[17]Liu Z, Williamson M S, Lansdell S J, Denholm I, HanZ, Millar N S. 2005. A nicotinic acetylcholinereceptor mutation conferring target-site resistance toimidacloprid in Nilaparvata lugens (brown planthopper).Procddedings of the National Academy of Sciences ofthe United States of America, 102, 8420-8425

[18]Liu Z, Williamson M S, Lansdell S J, Han Z, Denholm I,Millar N S. 2006. A nicotinic acetylcholine receptormutation (Y151S) causes reduced agonist potencyto a range of neonicotinoid insecticides. Journal ofNeurochemistry, 99, 1273-1281

[19]Matsuda K, Buckingham S D, Kleier D, Rauh J J, Grauso M,Sattelle D B. 2001. Neonicotinoids: insecticides actingon insect nicotinic acetylcholine receptors. Trends inPharmacological Sciences, 22, 573-580

[20]Millar N S. 2003. Assembly and subunit diversity ofnicotinic acetylcholine receptors. Biochemical SocietyTransactions, 31, 869-874

[21]Millar N S, Harkness P C. 2008. Assembly and trafficking ofnicotinic acetylcholine receptors. Molecular MembraneBiology, 25, 279-292

[22]Millar N S, Lansdell S J. 2010. Characterisation of insectnicotinic acetylcholine receptors by heterologousexpression. Advances in Experimental Medicine andBiology, 683, 65-73

[23]Romanelli M N, Gualtieri F. 2003. Cholinergic nicotinicreceptors: competitive ligands, allosteric modulators,and their potential applications. Medicinal Research Reviews, 23, 393-426

[24]Shao Y M, Dong K, Zhang C X. 2007. The nicotinicacetylcholine receptor gene family of the silkworm,Bombyx mori. BMC Genomics, 8, 324.Tamura K, Peterson D, Peterson N, Stecher G, Nei M S K.2011. MEGA5: molecular evolutionary genetics analysisusing maximum likelihood, evolutionary distance, andmaximum parsimony methods. Molecular Biology andEvolution, 28, 2731-2739

[25]Thompson J D, Higgins, D G, Gibson T J. 1994. Clustal-W-improving the sensitivity of progressive multiplesequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice.Nucleic Acids Research, 22, 4673-4680

[26]Yao X, Song F, Zhang Y, Shao Y, Li J, Liu Z. 2009.Nicotinic acetylcholine receptor beta1 subunit from thebrown planthopper, Nilaparvata lugens: A-to-I RNAediting and its possible roles in neonicotinoid sensitivity.Insect Biochemistry and Molecular Biology, 39, 348-354
[1] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
[2] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[3] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[4] WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa[J]. >Journal of Integrative Agriculture, 2023, 22(2): 514-525.
[5] SU Li-yao, XIAO Xue-chen, JIANG Meng-qi, HUANG Shu-qi, XUE Xiao-dong, LI Xue, LAI Zhong-xiong, LIN Yu-ling . Genome-wide analysis of the CCCH zinc finger family in longan: Characteristic identification and expression profiles in Dimocarpus longan Lour[J]. >Journal of Integrative Agriculture, 2022, 21(1): 113-130 .
[6] CHEN Rong-zhu, SHEN Xu, ZHANG Shu-ting, ZHAO Hua, CHEN Xiao-hui, XU Xiao-ping, HUO Wen, ZHANG Zi-hao, LIN Yu-ling, LAI Zhong-xiong. Genome-wide identification and expression analysis of Argonaute gene family from longan embryogenic callus[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2138-2155.
[7] QU Cheng, WANG Ran, CHE Wu-nan, LI Feng-qi, ZHAO Hai-peng, WEI Yi-yun, LUO Chen, XUE Ming. Identification and tissue distribution of odorant binding protein genes in Harmonia axyridis (Coleoptera: Coccinellidae)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2204-2213.
[8] SHAN Yan-ju, JI Gai-ge, ZOU Jian-min, ZHANG Ming, TU Yun-jie, LIU Yi-fan, JU Xiao-jun, SHU Jing-ting. PGC-1α differentially regulates the mRNA expression profiles of genes related to myofiber type specificity in chicken[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2083-2094.
[9] ZHANG Wei, LI Bei, YU Bin. Genome-wide identification, phylogeny and expression analysis of the SBP-box gene family in maize (Zea mays)[J]. >Journal of Integrative Agriculture, 2016, 15(1): 29-41.
[10] HUANG Li-yu, ZHANG Fan, QIN Qiao, WANG Wen-sheng, ZHANG Ting, FU Bin-ying. Identification and validation of root-specific promoters in rice[J]. >Journal of Integrative Agriculture, 2015, 14(1): 1-10.
[11] YANG Ya-lan, LI Yan, LIANG Ru-yi, ZHOU Rong, AO Hong, MU Yu-lian, YANG Shu-lin, LI Kui , TANG Zhong-lin. Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1331-1339.
[12] ZHAO Shuan-ping1, 4 , TANG Zhong-lin1, ZHOU Rong1, QU Chang-qing3, ZHENG Jian-wei2 and LI Kui1. Chromosome Mapping, Expression and Polymorphism Analysis of CRABP1 Gene in Pigs[J]. >Journal of Integrative Agriculture, 2014, 13(5): 1051-1057.
[13] JU Xiang-hong, XU Han-jin, YONG Yan-hong, AN Li-long, XU Ying-mei, JIAO Pei-rong , LIAO Ming. Heat Stress Upregulates the Expression of TLR4 and Its Alternative Splicing Variant in Bama Miniature Pigs[J]. >Journal of Integrative Agriculture, 2014, 13(11): 2479-2487.
[14] WANG Hai-hong, Stuart R Reitz, WANG Li-xia, WANG Shuai-yu, LI Xue , LEI Zhong-ren. The mRNA Expression Profiles of Five Heat Shock Protein Genes from Frankliniella occidentalis at Different Stages and Their Responses to Temperatures and Insecticides[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2196-2210.
[15] ZHANG Peng, DENG Heng, XIAO Fang-ming , LIU Yong-sheng. Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Genes in Response to Hormones and Stresses Treatments in Different Ecotypes of Rice (Oryza sativa)[J]. >Journal of Integrative Agriculture, 2013, 12(5): 737-748.
No Suggested Reading articles found!