Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1994-2005    DOI: 10.1016/j.jia.2023.09.023
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Identification of transient receptor potential channel genes and functional characterization of TRPA1 in Spodoptera frugiperda 

Yutong Zhang1*, Hangwei Liu2*, Song Cao2, 3*, Bin Li1, 2, Yang Liu1, Guirong Wang1, 2#

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

3 Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

草地贪夜蛾是一种极具破坏性的害虫,由于其强大的繁殖和迁飞能力,已成为一种全球性害虫。瞬时受体电位(Transient Receptor PotentialTRP通道一个庞大的离子通道家族,在昆虫感知外界环境和维持内部稳态中发挥着举足轻重的作用。近年来,TRP通道在昆虫行为调控中的重要作用得到了广泛的研究。本研究草地贪夜蛾基因组中鉴定了15TRP基因座共编码26个转录本,并分析了其在不同发育阶段的表达谱。结果表明,草地贪夜蛾含有4TRPC基因、6TRPA基因、1TRPM基因、2TRPV基因、1TRPN基因和1TRPML基因,但并未鉴定到TRPP基因。此外,利用爪蟾卵母细胞表达系统对SfruTRPA1功能进行了鉴定,SfruTRPA1能被20 ~ 45℃范围内的升高温度激活,在相同温度范围内重复刺激后无明显脱敏现象。外,SfruTRPA1能被天然化学物质异硫氰酸烯丙酯(allyl isothiocyanate, AITC)和肉桂醛(cinnamaldehyde, CA)激活研究草地贪夜蛾的TRP通道基因进行了鉴定,为开发针对TRP通道的新型农药提供了靶标,也为全面解析TRP通道在昆虫生理功能中的作用奠定了基础。



Abstract  

Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.  Transient receptor potential (TRP) channels, which constitute a vast ion channel family, play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.  TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.  In this study, we identified 15 TRP gene loci encoding 26 transcripts in the genome of Sfrugiperda and analyzed their expression profiles at different developmental stages.  The results revealed that Sfrugiperda possesses four TRPC genes, six TRPA genes, one TRPM gene, two TRPV genes, one TRPN gene, and one TRPML gene, while a canonical TRPP is absent.  Moreover, the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.  The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45°C, and there is no significant desensitization after repeated stimuli within the same temperature range.  Additionally, SfruTRPA1 is activated by certain natural chemicals, including allyl isothiocyanate (AITC) and cinnamaldehyde (CA).  These findings provide valuable insights to the TRP genes in Sfrugiperda.

Keywords:  Spodoptera frugiperda        transient receptor potential channel        expression profile        TRPA1        Xenopus oocyte  
Received: 27 April 2023   Accepted: 02 August 2023
Fund: This work was funded by the Shenzhen Science and Technology Program, China (KQTD20180411143628272), the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, China (pt202101-02) and the National Key R&D Program of China (2022YFE0116500).
About author:  Yutong Zhang, E-mail: 82101222333@caas.cn; Hangwei Liu, E-mail: liuhangwei2014@163.com; Song Cao, E-mail: csong@ccnu.edu.cn; #Correspondence Guirong Wang, E-mail: wangguirong@caas.cn * These authors contributed equally to this study.

Cite this article: 

Yutong Zhang, Hangwei Liu, Song Cao, Bin Li, Yang Liu, Guirong Wang. 2024.

Identification of transient receptor potential channel genes and functional characterization of TRPA1 in Spodoptera frugiperda  . Journal of Integrative Agriculture, 23(6): 1994-2005.

Afroz A, Howlett N, Shukla A, Ahmad F, Batista E, Bedard K, Payne S, Morton B, Mansfield J H, Glendinning J I. 2013. Gustatory receptor neurons in Manduca sexta contain a TrpA1-dependent signaling pathway that integrates taste and temperature. Chemical Senses, 38, 605–617.

Bo L, Colin N D. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, 884–890.

Cheng L E, Song W, Looger L L, Jan L Y, Jan Y N. 2010. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron, 67, 373–380.

Chyb S, Raghu P, Hardie R C. 1999. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature, 397, 255–259.

Cordero-Morales J F, Gracheva E O, Julius D. 2011. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences of the United States of America, 108, E1184–E1191.

Das A, Holmes T C, Sheeba V. 2016. dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster. Journal of Biological Rhythms, 31, 272–288.

Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno P G, Murphy S T, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S, Witt A. 2017. Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28, 196–201.

Freichel M, Suh S H, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. 2001. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4–/– mice. Nature Cell Biology, 3, 121–127.

Fu T, Hull J J, Yang T, Wang G. 2016. Identification and functional characterization of four transient receptor potential ankyrin 1 variants in Apolygus lucorum (Meyer-Dür). Insect Molecular Biology, 25, 370–384.

Georgiev P, Okkenhaug H, Drews A, Wright D, Lambert S, Flick M, Carta V, Martel C, Oberwinkler J, Raghu P. 2010. TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development. Cell Metabolism, 12, 386–397.

Hamada F N, Rosenzweig M, Kang K, Pulver S R, Ghezzi A, Jegla T J, Garrity P A. 2008. An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454, 217–220.

Hofmann T, Chubanov V, Chen X, Dietz A S, Gudermann T, Montell C. 2010. Drosophila TRPM channel is essential for the control of extracellular magnesium levels. PLoS ONE, 5, e10519.

Huang F. 2021. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: Lessons and implications for Bt corn IRM in China. Insect Science, 28, 574–589.

Kandasamy R, London D, Stam L, Von Deyn W, Zhao X, Salgado V L, Nesterov A. 2017. Afidopyropen: New and potent modulator of insect transient receptor potential channels. Insect Biochemistry and Molecular Biology, 84, 32–39.

Kang K, Pulver S R, Panzano V C, Chang E C, Griffith L C, Theobald D L, Garrity P A. 2010. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature, 464, 597–600.

Keller O, Kollmar M, Stanke M, Waack S. 2011. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics, 27, 757–763.

Kohno K, Sokabe T, Tominaga M, Kadowaki T. 2010. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. Journal of Neuroscience, 30, 12219–12229.

Kwon Y, Kim S H, Ronderos D S, Lee Y, Akitake B, Woodward O M, Guggino W B, Smith D P, Montell C. 2010a. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Current Biology, 20, 1672–1678.

Kwon Y, Shen W L, Shim H S, Montell C. 2010b. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. Journal of Neuroscience, 30, 10465–10471.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.

Lehnert B P, Baker A E, Gaudry Q, Chiang A S, Wilson R I. 2013. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron, 77, 115–128.

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296.

Liu C, Montell C. 2015. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochemical and Biophysical Research Communications, 460, 22–25.

Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh M J. 2007. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature, 450, 294–298.

Maienfisch P. 2019. Selective feeding blockers: Pymetrozine, flonicamid, and pyrifluquinazon. Modern Crop Protection Compounds, 3, 1501–1526.

Manwill P K, Kalsi M, Wu S, Martinez Rodriguez E J, Cheng X, Piermarini P M, Rakotondraibe H L. 2020. Semi-synthetic cinnamodial analogues: Structural insights into the insecticidal and antifeedant activities of drimane sesquiterpenes against the mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 14, e0008073.

Montell C. 2005. The TRP superfamily of cation channels. Science’s STKE, 272, re3.

Montell C. 2012. Drosophila visual transduction. Trends in Neurosciences, 35, 356–363.

Montell C, Birnbaumer L, Flockerzi V. 2002. The TRP channels, a remarkably functional family. Cell, 108, 595–598.

Muraro D S, de Oliveira Abbade Neto D, Kanno R H, Kaiser I S, Bernardi O, Omoto C. 2021. Inheritance patterns, cross-resistance and synergism in Spodoptera frugiperda (Lepidoptera: Noctuidae) resistant to emamectin benzoate. Pest Management Science, 77, 5049–5057.

Nesterov A, Spalthoff C, Kandasamy R, Katana R, Rankl N B, Andrés M, Jähde P, Dorsch J A, Stam L F, Braun F J, Warren B, Salgado V L, Pfert M C G. 2015. TRP channels in insect stretch receptors as insecticide targets. Neuron, 86, 665–671.

Palmer C P, Aydar E, Djamgoz M B. 2005. A microbial TRP-like polycystic-kidney-disease-related ion channel gene. Biochemical Journal, 387, 211–219.

Peng G, Shi X, Kadowaki T. 2015. Evolution of TRP channels inferred by their classification in diverse animal species. Molecular Phylogenetics and Evolution, 84, 145–157.

Qiao X, Zhang X, Zhou Z, Guo L, Wu W, Ma S, Zhang X, Montell C, Huang J. 2022. An insecticide target in mechanoreceptor neurons. Science Advances, 8, eabq3132.

Rosenzweig M, Brennan K M, Tayler T D, Phelps P O, Patapoutian A, Garrity P A. 2005. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes & Development, 19, 419–424.

Rosenzweig M, Kang K, Garrity P A. 2008. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 105, 14668–14673.

Sato A, Sokabe T, Kashio M, Yasukochi Y, Tominaga M, Shiomi K. 2014. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 111, E1249–E1255.

Shen W L, Kwon Y, Adegbola A A, Luo J, Chess A, Montell C. 2011. Function of rhodopsin in temperature discrimination in Drosophila. Science, 331, 1333–1336.

Shimomura K, Oikawa H, Hasobe M, Suzuki N, Yajima S, Tomizawa M. 2021. Contact repellency by L-menthol is mediated by TRPM channels in the red flour beetle Tribolium castaneum. Pest Management Science, 77, 1422–1427.

Sidi S, Friedrich R W, Nicolson T. 2003. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 301, 96–99.

Sokabe T, Tsujiuchi S, Kadowaki T, Tominaga M. 2008. Drosophila painless is a Ca2+-requiring channel activated by noxious heat. Journal of Neuroscience, 28, 9929–9938.

Sparks, Alton N. 1979. A review of the riology of the fall armyworm. The Florida Entomologist, 62, 82.

Stanke M, Waack S. 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, 19 (Suppl 2), II215–II225.

Sun X, Hu C, Jia H, Wu Q, Shen X, Zhao S, Jiang Y, Wu K. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture, 20, 664–672.

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.

Tian Q, Wang P, Xie C, Pang P, Zhang Y, Gao Y, Cao Z, Wu Y, Li W, Zhu M X, Li D, Yao J. 2022. Identification of an arthropod molecular target for plant-derived natural repellents. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118152119.

Trost C, Bergs C, Himmerkus N, Flockerzi V. 2001. The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins. Biochemical Journal, 355, 663–670.

Venkatachalam K, Long A A, Elsaesser R, Nikolaeva D, Broadie K, Montell C. 2008. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell, 135, 838–851.

Venkatachalam K, Montell C. 2007. TRP channels. Annual Review of Biochemistry, 76, 387–417.

Wei J, Fu T, Yang T, Liu Y, Wang G. 2015. A TRPA1 channel that senses thermal stimulus and irritating chemicals in Helicoverpa armigera. Insect Molecular Biology, 24, 412–421.

Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu X. 2013. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell, 152, 806–817.

Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng L E, Meltzer S, Jan L Y, Jan Y N. 2013. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature, 493, 221–225.

Zhang W, Yan Z, Jan L Y, Jan Y N. 2013. Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America, 110, 13612–13617.

Zhao Y, McVeigh B, Moiseenkova-Bell V. 2021. Structural pharmacology of TRP channels. Journal of Molecular Biology, 433, 166914.

Zhong L, Bellemer A, Yan H, Ken H, Jessica R, Hwang R Y, Pitt G S, Tracey W D. 2012. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Reports, 1, 43–55.

[1] Zezheng Fan, Yifei Song, Shengyuan Zhao, Kongming Wu.

Invasion of fall armyworm led to the succession of maize pests in Southwest China [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1300-1314.

[2] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[3] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
[4] LÜ Chun-yang, GE Shi-shuai, HE Wei, ZHANG Hao-wen, YANG Xian-ming, CHU Bo, WU Kong-ming. Accurate recognition of the reproductive development status and prediction of oviposition fecundity in Spodoptera frugiperda (Lepidoptera: Noctuidae) based on computer vision[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2173-2187.
[5] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
No Suggested Reading articles found!