Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 514-525    DOI: 10.1016/j.jia.2022.08.015
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa

WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

化学感受蛋白(chemosensory proteins,CSPs)在昆虫体内发挥多种功能。为了明确丽蚜小蜂化学感受蛋白EforCSP3是否在其寄主定位和寄主选择性方面发挥嗅觉识别作用,本研究从丽蚜小蜂中鉴定到化学感受蛋白EforCSP3,并对其进行了基因表达、配体结合和分子对接试验。结果表明,EforCSP3在丽蚜小蜂雌蜂头部高表达,成虫期该基因的相对表达量显著高于其他发育时期;荧光竞争结合试验发现EforCSP3与多种寄主植物挥发物之间具有较高的结合力,其中,除月桂烯和α-律草烯外,还有邻苯二甲酸二丁酯、1-辛烯、β-榄香烯和十三烷,EforCSP3的结合力最强,这些组分具有被开发为丽蚜小蜂引诱剂的潜力;进一步通过蛋白质结构建模和分子对接预测了可能参与挥发物结合的EforCSP3关键氨基酸残基。结合此前的研究,α-葎草烯和β-月桂烯已被证明可以吸引丽蚜小蜂,本研究亦发现二者EforCSP3有强的结合力。总之,EforCSP3可能参与丽蚜小蜂的化学信息识别接收过程。


Chemosensory proteins (CSPs) perform several functions in insects.  This study performed the gene expression, ligand-binding, and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa, to determine whether EforCSP3 functions in olfaction, especially in host location and host preference.  The results showed that EforCSP3 was highly expressed in the female head, and its relative expression was much higher in adults than in other developmental stages.  The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles, among which dibutyl phthalate, 1-octene, β-elemene, and tridecane had the strongest binding affinity with EforCSP3, besides α-humulene and β-myrcene, and should be assessed as potential attractants.  Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3 possibly involved in volatile binding.  α-Humulene and β-myrcene attracted Eformosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study.  In conclusion, EforCSP3 may be involved in semiochemical reception by Eformosa.

Keywords:  Encarsia formosa        chemosensory protein        expression profiles        fluorescence binding assay        molecular docking  
Received: 10 January 2022   Accepted: 11 May 2022

This research was supported by the National Natural Science Foundation of China (31772172), the earmarked fund for China Agriculture Research System (CARS-25) and the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables.  

About author:  WANG Ke, E-mail:; Correspondence WANG Shao-li, Tel: +86-10-82109518, E-mail:

Cite this article: 

WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li. 2023. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa. Journal of Integrative Agriculture, 22(2): 514-525.

Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P. 1999. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. European Journal of Biochemistry, 262, 745–754.
Burger J M. 2002. How to behave? Evolution of host-handling behaviour in the whitefly parasitoid Encarsia formosa. Ph D 
thesis, Wageningen University, Netherlands. pp. 8–22.
Calvello M, Brandazza A, Navarrini A, Dani F R, Turillazzi S, Felicioli A, Pelosi P. 2005. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochemistry and Molecular Biology, 35, 297–307.
Campanacci V, Krieger J, Bette S, Sturgis J N, Lartigue A, Cambillau C, Breer H, Tegoni M. 2001. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. Journal of Biological Chemistry, 276, 20078–20084.
Campanacci V, Lartigue A, Hallberg B M, Jones T A, Giudici-Orticoni M T, Tegoni M, Cambillau C. 2003. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 100, 5069–5074.
Caspermeyer J. 2018. MEGA software celebrates silver anniversary. Molecular Biology and Evolution, 35, 1558–1560.
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer E, Angeli S. 2014. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics, 15, 1141.
Duan S G, Li D Z, Wang M Q. 2019. Chemosensory proteins used as target for screening behaviourally active compounds in the rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Insect Molecular Biology, 28, 123–135.
Forli S, Huey R, Pique M E, Sanner M F, Goodsell D S, Olson A J. 2016. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11, 905–919.
Gu S H, Wang S Y, Zhang X Y, Ji P, Liu J T, Wang G R, Wu K M, Guo Y Y, Zhou J J, Zhang Y J, Smagghe G. 2012. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE, 7, e42871.
He Y Y, Wang K, Zeng Y, Guo Z J, Zhang Y J, Wu Q J, Wang S L. 2020. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics, 112, 2291–2301.
Kaissling K E. 2001. Olfactory perireceptor and receptor events in moths: A kinetic model. Chemical Senses, 26, 125–150.
Kessler A, Baldwin I T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–2144.
Kitabayashi A N, Arai T, Kubo T, Natori S. 1998. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochemistry and Molecular Biology, 28, 785–790.
Leal W S. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.
Li F Q, Dewer Y, Li D, Qu C, Luo C. 2021. Functional and evolutionary characterization of chemosensory protein CSP2 in the whitefly, Bemisia tabaci. Pest Management Science, 77, 378–388. 
Li G W, Chen X L, Chen L H, Wang W Q, Wu J X. 2019. Functional analysis of the chemosensory protein GmolCSP8 from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Frontiers in Physiology, 10, 552. 
Lin X D, Mao Y W, Zhang L. 2018. Binding properties of four antennae-expressed chemosensory proteins (CSPs) with insecticides indicates the adaption of Spodoptera litura to environment. Pesticide Biochemistry and Physiology, 146, 43–51.
Liu G X, Ma H M, Xie H Y, Xuan N, Guo X, Fan Z X, Rajashekar B, Arnaud P, Offmann B, Picimbon J F, Wang X W. 2016. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE, 11, e0154706.
Liu G X, Xuan N, Chu D, Xie H Y, Fan Z X, Bi Y P, Picimbon J F, Qin Y C, Zhong S T, Fa L Y, Gao Z L, Pan W L,Wang G Y, Rajashekar B J. 2014. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Archives of Insect Biochemistry and Physiology, 85, 137–151.
Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field L M, Zhou J J. 2012. Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Molecular Biology, 21, 41–48.
Liu X, Chen G, Zhang Y J, Xie W, Wu Q J, Wang S L. 2017. Virus-infected plants altered the host selection of Encarsia formosa, a parasitoid of whiteflies. Frontiers in Physiology, 8, 937.
Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S, Olson A J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.
Ozaki K, Utoguchi A, Yamada A, Yoshikawa H. 2008. Identification and genomic structure of chemosensory proteins (CSP) and odorant binding proteins (OBP) genes expressed in foreleg tarsi of the swallowtail butterfly Papilio xuthus. Insect Biochemistry and Molecular Biology, 38, 969–976.
Pelosi P, Iovinella I, Zhu J, Wang G, Dani F R. 2018. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biological Reviews of the Cambridge Philosophical Society, 93, 184–200.
Pelosi P, Zhou J J, Ban L P, Calvello M. 2006. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 63, 1658–1676.
Peng X, Liu L, Huang Y X, Wang S J, Li D X, Chen S T, Simon J C, Qu M J, Chen M H. 2021. Involvement of chemosensory proteins in host plant searching in the bird cherry-oat aphid. Insect Science, 28, 1338–1353.
Peng Y, Wang S N, Li K M, Liu J T, Zheng Y, Shan S, Yang Y Q, Li R J, Zhang Y J, Guo Y Y, Falabella P. 2017. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS ONE, 12, e0180775.
Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738.
Schuman M C, Barthel K, Baldwin I T. 2012. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. eLife, 1, e00007.
Swanson J I, Torto B, Kells S A, Mesce K A, Tumlinson J H, Spivak M. 2009. Odorants that induce hygienic behavior in honeybees: Identification of volatile compounds in chalkbrood-infected honeybee larvae. Journal of Chemical Ecology, 35, 1108–1116.
Tegoni M, Campanacci V, Cambillau C. 2004. Structural aspects of sexual attraction and chemical communication in insects. Trends in Biochemical Sciences, 29, 257–264.
Tian Z, Liu J Y, Zhang Y L. 2016. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals. Scientific Reports, 6, 22336.
Wang Q, Liu J T, Zhang Y J, Chen J L, Gu S H. 2021. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Insect Biochemistry and Molecular Biology, 130, 103528.
Wang Z H, Yang F, Sun A, Shan S, Zhang Y J, Wang S N. 2021. Expression profiles and functional characterization of chemosensory protein 15 (HhalCSP15) in the brown marmorated stink bug Halyomorpha Halys. Frontiers in Physiology, 12, 721247. 
Waris M I, Younas A, Adeel M M, Duan S G, Quershi S R, Ullah R M K, Wang M Q. 2020. The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. Insect Science, 27, 531–544.
Wu Z Z, Cui Y, Qu M Q, Lin J H, Chen M S, Bin S Y, Lin J T. 2019. Candidate genes coding for odorant binding proteins and chemosensory proteins identified from dissected antennae and mouthparts of the southern green stink bug Nezara viridula. Comparative Biochemistry and Physiology (Part D: Genomics and Proteomics), 31, 100594.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12, 7–8.
Younas A, Waris M I, Muhammad T U Q, Muhammad S, Prager S M, Wang M Q. 2018. Functional analysis of the chemosensory protein MsepCSP8 from the oriental armyworm Mythimna separata. Frontiers in Physiology, 9, 872.
Zeng F F, Liu H, Zhang A, Lu Z X, Leal W S, Abdelnabby H, Wang M Q. 2018. Three chemosensory proteins from the rice leaf folder Cnaphalocrocis medinalis involved in host volatile and sex pheromone reception. Insect Molecular Biolology, 27, 710–723.
Zeng Y, Merchant A, Wu Q J, Wang S L, Kong L, Zhou X G, Xie W, Zhang Y J. 2020. A chemosensory protein BtabCSP11 mediates reproduction in Bemisia tabaci. Frontiers in Physiology, 11, 709.
Zhang H, Chen J L, Lin J H, Lin J T, Wu Z Z. 2020. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. Pest Management Science, 76, 2609–2618.
Zhang S A, Zhang Y J, Su H H, Gao X W, Guo Y Y. 2009. Identification and expression pattern of putative odorant-binding proteins and chemosensory proteins in antennae of the Microplitis mediator (Hymenoptera: Braconidae). Chemical Senses, 34, 503–512.
Zhang S F, Kong X B, Wang H B, Zhou G, Yu J X, Liu F, Zhang Z. 2016. Sensory and immune genes identification and analysis in a widely used parasitoid wasp Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). Insect Science, 23, 417–429.
Zhang Y B, Dong X L, Liu J X, Hu M Y, Zhong G H, Geng P, Yi X. 2012. Molecular cloning, expression and molecular modeling of chemosensory protein from Spodoptera litura and its binding properties with Rhodojaponin III. PLoS ONE, 7, e47611.
Zhang Y N, Ye Z F, Yang K, Dong S L. 2014. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene, 536, 279–286.
Zhao Y N, Wang F Z, Zhang X Y, Zhang S H, Guo S L, Zhu G P, Liu Q, Li M, Hull J J. 2016. Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea. PLoS ONE, 11, e0148159.
Zhou C X, Min S F, Yan L T, Wang M Q. 2015. Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. Comparative Biochemistry and Physiology (Part D: Genomics and Proteomics), 16, 10–19.
Zhou Y T, Li L, Zhou X R, Tan Y, Pang B P. 2020. Three chemosensory proteins involved in chemoreception of Oedaleus asiaticus (Orthopera: Acridoidea). Journal of Chemical Ecology, 46, 138–149.
[1] Muhammad Irfan WARIS, Aneela YOUNAS, Rana Muhammad Kaleem ULLAH, Fatima RASOOL, Muhammad Muzammal ADEEL, WANG Man-qun. Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH[J]. >Journal of Integrative Agriculture, 2022, 21(3): 781-796.
No Suggested Reading articles found!