Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (12): 1958-1967    DOI: 10.1016/S1671-2927(00)8732
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Proteomic Identification of Rhythmic Proteins in Maize Seedling Leaves
 FENG Wan-jun, GUO Bao-jian, YAO Ying-yin, PENGHui-ru, SUN Qi-xin, NI Zhong-fu
1.Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/State Key Laboratory for Agrobiotechnology, Ministry of Education/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
2.National Plant Gene Research Centre, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Plant leaves respond to day/night cycling in a number of physiological ways. At the mRNA level, the expression of some genes changes during the 24 h period. To determine which proteins exhibited a rhythmic pattern of expression, proteomic profiles in maize seedling leaves were analyzed by high-throughput two-dimensional gel electrophoresis, combined with MALDI-TOF MS technology. Of the 464 proteins that were detected with silver staining in a pH range of 4-7, 17 (3.66%) showed clock rhythmicity in their abundance. These proteins belonged to diverse functional groups and proteins involved in photosynthesis and carbon metabolism were over-represented. These findings provide a new perspective on the relationship between the physiological functions of leaves and the clock rhythmic system.

Abstract  Plant leaves respond to day/night cycling in a number of physiological ways. At the mRNA level, the expression of some genes changes during the 24 h period. To determine which proteins exhibited a rhythmic pattern of expression, proteomic profiles in maize seedling leaves were analyzed by high-throughput two-dimensional gel electrophoresis, combined with MALDI-TOF MS technology. Of the 464 proteins that were detected with silver staining in a pH range of 4-7, 17 (3.66%) showed clock rhythmicity in their abundance. These proteins belonged to diverse functional groups and proteins involved in photosynthesis and carbon metabolism were over-represented. These findings provide a new perspective on the relationship between the physiological functions of leaves and the clock rhythmic system.
Keywords:  proteomics      rhythmic proteins      maize leaves      mass spectrometry      two-dimensional gel electrophoresis  
Received: 16 August 2011   Accepted:
Fund: 

This work was financially supported by the National Basic Research Program of China (2007CB109000), the National Science Found for Distinguished Young Scholars, China (30925023), the National Natural Science Foundation of China (30671297), and the National High- Tech R&D Program of China (2009AA101102).

Corresponding Authors:  Correspondence SUN Qi-xin, Tel/Fax: +86-10-62733426, E-mail: qxsun@cau.edu.cn; NI Zhong-fu, Tel/Fax: +86-10-62733426, E-mail: wheat3392@cau.edu.cn     E-mail:  qxsun@cau.edu.cn

Cite this article: 

FENG Wan-jun, GUO Bao-jian, YAO Ying-yin, PENGHui-ru , SUN Qi-xin, NI Zhong-fu. 2012. Proteomic Identification of Rhythmic Proteins in Maize Seedling Leaves. Journal of Integrative Agriculture, 12(12): 1958-1967.

[1]Alabadi D, Oyama T, Yanovsky M J, Harmon F G, M P,Kay S A. 2001. Reciprocal regulation between TOC1and LHY/CCA1 within the Arabidopsis circadian clock.Science, 293, 880-883.

[2]Anderson L E, Goldhaber-Gordon I M, Li D, Tang X Y,XiangMH, Prakash N. 1995. Enzyme-enzyme interactionin the chloroplast: glyceraldehyde-3-phosphatedehydrogenase, triose phosphate isomerase andaldolase. Planta, 196, 245-255.

[3]Bancos S, Szatmi AM, Castle J, Kozma-BognL, ShibataK,Yokota T, Bishop GJ, Nagy F, SzekeresM. 2006. Diurnalregulation of the brassinosteroid-biosynthetic CPD genein Arabidopsis. Plant Physiology, 141, 299-309.

[4]Bisova K, Krylov D M, Umen J G. 2005. Genome-wideannotation and expression profiling of cell cycleregulatory genes in Chlamydomonas reinhardtii. PlantPhysiology, 137, 475-491.

[5]Casper T. 1994. Genetic dissection of the biosynthesis,degradation, and biological functions of starch. In:Meyerowitz EM, Somerville C R, eds., Arabidopsis. ColdSpring Harbor Laboratory Press, USA. pp. 913-936.

[6]Chandler J W, Apel K, Melzer S. 2001. A novel putative b-amylase gene and ATb-Amy from Arabidopsis thalianaare circadian regulated. Plant Science, 161, 1019-1024.

[7]Covington M F, Maloof J N, Straume M, Kay S A, HarmerS L. 2008. Global transcriptome analysis reveals circadianregulation of key pathways in plant growth anddevelopment. Genome Biology, 9, 1-18.

[8]Covington M F, Harmer S L. 2007. The circadian clockregulates auxin signaling and responses in Arabidopsis.PLoS Biology, 5, 1773-1784.

[9]Day D A, Tuite M F. 1998. Post-transcriptional generegulatory mechanisms in eukaryotes: an overview.Journal of Endocrinology, 157, 361-371.

[10]Devenish R J, Prescott M, Roucou X, Nagley P. 2000.Insights into ATP synthase assembly and functionthrough the molecular genetic manipulation of subunitsof the yeast mitochondrial enzyme complex. Biochimicaet Biophysica Acta, 1458, 428-442.

[11]Dodd A N, Salathia N, Hall A, Kei E, Th R, Nagy F,Hibberd JM,MillarAJ,WebbAAR. 2005. Plant circadianclocks increase photosynthesis, growth, survival, andcompetitive advantage. Science, 309, 630-633.

[12]Dodd A N, Griffiths H, Taybi T, Cushman J C, Borland A M.2003. Integrating diel starch metabolism with thecircadian and environmental regulation of crassulaceanacid metabolism in Mesembryanthemum crystallinum.Planta, 216, 789-797.

[13]Donnelly B E, Madden R D, Ayoubi P, Porter D R, DillwithJ W. The wheat (Triticum aestivum L.) leaf proteome.Proteomics, 5, 1624-1633.

[14]Dunlap J C. 1999. Molecular bases for circadian clocks.Cell, 96, 271-290.

[15]Dunlap J C, Loros J J. 2004. The Neurospora circadiansystem. Journal of Biological Rhythms, 19, 414-424.

[16]Emery P, Reppert S M. 2004. A rhythmic Ror. Neuron, 43,443-446.

[17]Ghanotakis D F, Yocum C F. 1990. Photosystem II and theoxygen-evolving complex. Annual Review of PlantPhysiology and Plant Molecular Biology, 41, 255-276.

[18]Graf A, Schlereth A, Stitt M, Smith A M. 2010. Circadiancontrol of carbohydrate availability for growth inArabidopsis plants at night. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 107, 9458-9463.

[19]Gross S P, Vershinin M, Shubeita G T. 2007. Cargo transport:two motors are sometimes better than one. CurrentBiology, 17, 478-486.

[20]Harmer S L, Hogenesch J B, Straume M, Chang H S, Han B,Zhu T, Wang X, Kreps J A, Kay S A. 2000. Orchestratedtranscription of key pathways in Arabidopsis by thecircadian clock. Science, 290, 2110-2113.

[21]Harmer S L. 2009. The circadian system in higher plants.Annual Review of Plant Biology, 60, 357-377.

[22]Harms E, KivimS, Young M W, Saez L. 2004.Posttranscriptional and posttranslational regulation ofclock genes. Journal of Biological Rhythms, 19, 361-373.

[23]Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E,Danilevskaya O N. 2010. Maize global transcriptomicsreveals pervasive leaf diurnal rhythms but rhythms indeveloping ears are largely limited to the core oscillator.PLoS One, 5, e12887.Huang L M, Chen T H. 2003. Circadian rhythm of ATPcontens in Synechococcus RF-1.

[24]BioFormosa, 38, 1-5.Hwang H, Cho M H, Hahn B S, Lim H, Kwon Y K, Hahn TR, Bhoo S H. 2011. Proteomic identification of rhythmicproteins in rice seedlings. Biochimica et BiophysicaActa, 1814, 470-479.

[25]Jones P, Messner B, Nakajima J I, Schfner A R, Saito K.2003. UGT73C6 and UGT78D1, glycosyltransferasesinvolved in flavonol glycoside biosynthesis inArabidopsis thaliana. The Journal of BiologicalChemistry, 278, 43910-43918.

[26]Jouve L, Kevers C, Greppin H, Gaspar T, Agosti R D. 1999.Involvement of indole-3-acetic acid in the circadiangrowth of the first internode of Arabidopsis.

[27]Planta,209, 136-142.Keegan K P, Pradhan S, Wang J P, Allada R. 2007. Metaanalysisof Drosophila circadian microarray studiesidentifies a novel set of rhythmically expressed genes.PLoS Computational Biology, 3, 2087-2110.

[28]Kreps J A, Kay SA. 1997. Coordination of plant metabolismand development by the circadian clock. The Plant Cell,9, 1235-1244.

[29]Proteomic Identification of Rhythmic Proteins in Maize Seedling Leaves Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M,Kanehisa M, Ishiura M. 2005. Global analysis of circadianexpression in the Cyanobacterium synechocystis sp. strainPCC 6803. Journal of Bacteriology, 187, 2190-2199.

[30]McClungm C R. Plant circadian rhythms. The Plant Cell,18, 792-803.

[31]Mendoza M, Redemann S, Brunner D. 2005. The fission yeastMO25 protein functions in polar growth and cell separation.European Journal of Cell Biology, 84, 915-926.

[32]Peirson S N, Butler J N, Duffield G E, Takher S, Sharma P,Foster R G. 2006. Comparison of clock gene expressionin SCN, retina, heart, and liver of mice. Biochemical andBiophysical Research Communications, 351, 800-807.

[33]Perales M, Mas P. 2007. A functional link between rhythmicchanges in chromatin structure and the Arabidopsisbiological clock. The Plant Cell, 19, 2111-2123.

[34]Porubleva L, Velden K V, Kothari S, Oliver D J, Chitnis P R.2001. The proteome of maize leaves: use of genesequences and expressed sequence tag data foridentification of proteins with peptide mass fingerprints.Electrophoresis, 22, 1724-1738.

[35]Price G D, Evans J R, Caemmerer S V, Yu J W, Badger M R.1995. Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNAreduces CO2 assimilation via a reduction in ribulosebisphosphate egeneration in transgenic tobacco plants.

[36]Planta, 195, 369-378.Samach A, Coupland G. 2000. Time measurement and thecontrol of flowering in plants. Bioessays, 22, 38-47.

[37]Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M,Wisman E. 2001. Microarray analysis of diurnal andcircadian-regulated genes in Arabidopsis. The PlantCell, 13, 113-123.

[38]Seung D, Risopatron J P, Jones B J, Marc J. 2011. Circadianclock-dependent gating in ABA signalling networks.Protoplasma, 249, 445-457.

[39]ShinoharaML, Loros J J, Dunlap J C. 1998. Glyceraldehyde-3-phosphate dehydrogenase is regulated on a failybasis by the circadian clock. The Journal of BiologicalChemistry, 273, 446-452.

[40]Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A,Dunstan H, Hylton C, Zeeman S C, Smith A M. 2004.Diurnal changes in the transcriptome encoding enzymesof starch metabolism provide evidence for bothtranscriptional and posttranscriptional regulation ofstarch metabolism in Arabidopsis leaves. Plant Physiology,136, 2687-2699.

[41]Steger D J, Haswell E S, Miller A L, Wente S R, Ohea E K.2003. Regulation of chromatin remodeling by inositolpolyphosphates. Science, 299, 114-116.

[42]Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A,Nettleton D, Schnable P S. 2006. All possible modes ofgene action are observed in a global comparison ofgene expression in a maize F1 hybrid and its inbredparents. Proceedings of the National Academy of Sciencesof the United States of America, 103, 6805-6810.

[43]Tsuji T, Hirota T, Takemori N, Komori N, Yoshitane H, FukudaM, Matsumoto H, Fukada Y. 2007. Circadian proteomicsof the mouse retina. Proteomics, 7, 3500-3508.

[44]Urrea-Gomez R, Ceballos H, Pandey S, Bahia FilhoAF C, LeonLA. 1996. A greenhouse screening technique for acid soiltolerance in maize. Agronomy Journal, 88, 806-812.

[45]Walla O J, Groot E J, Manfred S. 1994. On the molecularmechanism of the circadian clock: The 41 000 Mr clockprotein of Chlorella was identified as 3-phosphoglyceratekinase. Journal of Cell Science, 107, 719-726.

[46]Yu T S, Kofler H, Hsler R E, Hille D, Flge U I, ZeemanS C, Smith A M, Kossmann J, Lloyd J, Ritte G, et al.2001. The Arabidopsis sex1 mutant is defective in theR1 protein, a general regulator of starch degradation inplants, and not in the chloroplast hexose transporter.The Plant Cell, 13, 1907-1918.
[1] YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. Multi-omics-driven development of alternative crops for natural rubber production[J]. >Journal of Integrative Agriculture, 2023, 22(4): 959-971.
[2] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[3] QIU You-wen, FENG Zhe, FU Ming-ming, YUAN Xiao-han, LUO Chao-chao, YU Yan-bo, FENG Yanzhong, WEI Qi, LI Feng-lan. GsMAPK4, a positive regulator of soybean tolerance to salinity stress[J]. >Journal of Integrative Agriculture, 2019, 18(2): 372-380.
[4] REN Wen, LIU Ya, ZHOU Miao-yi, SHI Zi, WANG Tian-yu, ZHAO Jiu-ran, LI Yu. Dynamic changes of root proteome reveal diverse responsive proteins in maize subjected to cadmium stress[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2193-2204.
[5] ZHANG Yi-min, ZHANG Xiu-ze, WANG Tian-tian, David L. Hopkins, MAO Yan-wei, LIANG Rong-rong, YANG Guang-fu, LUO Xin, ZHU Li-xian. Implications of step-chilling on meat color investigated using proteome analysis of the sarcoplasmic protein fraction of beef longissimus lumborum muscle[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2118-2125.
[6] CHEN Qing-shan, YU Guo-long, ZOU Jia-nan, WANG Jing, QIU Hong-mei, ZHU Rong-sheng, CHANG Hui-lin, JIANG Hong-wei, HU Zhen-bang, LI Chang-yu, ZHANG Yan-jiao, WANG Jin-hui, WANG Xueding, GAO Shan.... GmDRR1, a dirigent protein resistant to Phytophthora sojae in Glycine max (L.) Merr.[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1289-1298.
[7] XU Ling, Faisal Islam, ZHANG Wen-fang, Muhammad A Ghani, Basharat Ali. 5-Aminolevulinic acid alleviates herbicide-induced physiological and ultrastructural changes in Brassica napus[J]. >Journal of Integrative Agriculture, 2018, 17(03): 579-592.
[8] LI Yan-jun, SUN Shi-chao, ZHANG Xin-yu, WANG Xiang-fei, LIU Yong-chang, XUE Fei, SUN Jie. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis[J]. >Journal of Integrative Agriculture, 2018, 17(01): 46-53.
[9] CONG Li-li, SUN Yan, LONG Rui-cai, KANG Jun-mei, ZHANG Tie-jun, LI Ming-na, WANG Zhen, YANG Qing-chuan. Modulation of protein expression in alfalfa (Medicago sativa L.) root and leaf tissues by Fusarium proliferatum[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2558-2572.
[10] MA Qiao-li, KANG Jun-mei, LONG Rui-cai, CUI Yan-jun, ZHANG Tie-jun, XIONG Jun-bo, YANG Qingchuan, SUN Yan. Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2266-2278.
[11] WEI Shan-shan, WANG Xiang-yu, LIU Peng, ZHANG Ji-wang, ZHAO Bin, DONG Shu-ting. Comparative proteomic analysis provides new insights into ear leaf senescence of summer maize (Zea mays L.) under fild condition[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1005-1016.
[12] WANG Ji-peng, XU You-ping, ZANG Xian-peng, LI Shuang-sheng, CAI Xin-zhong. Sclerotinia sclerotiorum virulence is affected by mycelial age via reduction in oxalate biosynthesis[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1034-1045.
[13] ZHAO Ya-zhou, LI Zhi-guo, TIAN Wen-li, FANG Xiao-ming, SU Song-kun, PENG Wen-jun. Differential volatile organic compounds in royal jelly associated with different nectar plants[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1157-1165.
[14] CAO Shang-yin, NIU Juan, CAO Da, LI Hao-xian, XUE Hui, CHEN Li-na, ZHANG Fu-hong, ZHAO Di-guang. Comparative proteomics analysis of pomegranate seeds on fruit maturation period (Punica granatum L.)[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2558-2564.
[15] DONG Yi-yang, LIU Jia-hui, WANG Sai, CHEN Qi-long, GUO Tian-yang, ZHANG Li-ya, JIN Yong, SU Hai-jia, TAN Tian-wei. Emerging frontier technologies for food safety analysis and risk assessment[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2231-2242.
No Suggested Reading articles found!