Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 959-971    DOI: 10.1016/j.jia.2023.03.007
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Multi-omics-driven development of alternative crops for natural rubber production
YANG Ning1, 2, YANG Dan-dan1, 2, YU Xu-chen1, 2, 3, XU Cao1, 2, 3#

1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P.R.China

2 CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R.China

3 University of Chinese Academy of Sciences, Beijing 100049, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

天然橡胶(Natural rubber)是一种生物高分子聚合物,由于具有独特的理化性质而成为重要的工业原料及不可替代的战略物资。巴西橡胶树(Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.)是目前商业化天然橡胶的唯一来源,主要生长在东南亚热带及亚热带地区的种植园中。然而,目前巴西橡胶树的产量难以满足急剧增长的全球工业对天然橡胶的迫切需求。以石油为加工原料的合成橡胶(Synthetic rubber部分补充天然橡胶产量的不足,但其工业性能无法比拟天然橡胶。因此,亟需开发具有更广泛环境适应性的天然橡胶新作物。本文综述了园艺植物-橡胶草(Taraxacum kok-saghyz Rodin)和莴苣(Lactuca L. species),木本植物-银胶菊(Parthenium argentatum A. Gray)和杜仲(Eucommia ulmoides Oliv.)以及其它有生产天然橡胶潜力的植物的研究进展。本综述以基因组学、转录组学、蛋白质组学和代谢组学等多维组学研究,以及天然橡胶生物合成分子机制为重点,讨论了基于现代生物技术的多维整合策略在解析天然橡胶生物合成机制方面的广阔前景,为加速天然橡胶新作物的培育提供借鉴。



Abstract  

Natural rubber (NR) is an irreplaceable biopolymer of economic and strategic importance owing to its unique physical and chemical properties.  The Pará rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) is currently the exclusive commercial source of NR, and it is primarily grown in plantations restricted to the tropical and subtropical areas of Southeast Asia.  However, current Pará rubber production barely meets the sharply increasing global industrial demand for rubber.  Petroleum-based synthetic rubber (SR) has been used to supplement the shortage of NR but its industrial performance is not comparable to that of NR.  Thus, there is an urgent need to develop new productive rubber crops with broader environmental adaptability.  This review summarizes the current research progress on alternative rubber-producing plants, including horticultural plants (Taraxacum kok-saghyz Rodin and Lactuca L. species), woody plants (Parthenium argentatum A. Gray and Eucommia ulmoides Oliv.), and other plant species with potential for NR production.  With an emphasis on the molecular basis of NR biosynthesis revealed by a multi-omics approach, we highlight new integrative strategies and biotechnologies for exploring the mechanism of NR biosynthesis with a broader scope, which may accelerate the breeding and improvement of new rubber crops. 

Keywords:  Natural rubber       multi-omics        genomics        transcriptomics        proteomics        new crops  
Received: 02 December 2022   Accepted: 22 February 2023
Fund: 

This work was supported by the National Key Research and Development Program of China (2019YFD1002701-02), the National Natural Science Foundation of China (32170371), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA24030503). 

About author:  #Correspondence XU Cao, Tel: +86-10-64803911, E-mail: caoxu@genetics.ac.cn

Cite this article: 

YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. 2023. Multi-omics-driven development of alternative crops for natural rubber production. Journal of Integrative Agriculture, 22(4): 959-971.

Abdul Rahman S N, Bakar M F A, Singham G V, Othman A S. 2019. Single-nucleotide polymorphism markers within MVA and MEP pathways among Hevea brasiliensis clones through transcriptomic analysis. 3 Biotech, 9, 388.
Ahmad N, Dayana S A S, Abnisa F, Mohd W A W D. 2018. Natural rubber, a potential alternative source for the synthesis of renewable fuels via Hydrous Pyrolysis. IOP Conference Series: Materials Science and Engineering, 334, 012004.
Archer B L, Cockbain E G. 1969. Rubber transferase from Hevea brasiliensis latex. Methods in Enzymology, 15, 476–480.
Asawatreratanakul K, Zhang Y W, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T. 2003. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. European Journal of Biochemistry, 270, 4671–4680.
Badouin H, Gouzy J, Grassa C J, Murat F, Staton S E, Cottret L, Lelandais-Briere C, Owens G L, Carrere S, Mayjonade B, Legrand L, Gill N, Kane N C, Bowers J E, Hubner S, Bellec A, Berard A, Berges H, Blanchet N, Boniface M C, et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 546, 148–152.
Barnes E K, Kwon M, Hodgins C L, Qu Y, Kim S W, Yeung E C, Ro D K. 2021. The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers. Planta, 253, 51.
Beharav A, Malarz J, Michalska K, Ben-David R, Stojakowska A. 2020. Variation of sesquiterpene lactone contents in Lactuca altaica natural populations from Armenia. Biochemical Systematics and Ecology, 90, 104030.
van Beilen J B, Poirier Y. 2007a. Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 25, 522–529.
van Beilen J B, Poirier Y. 2007b. Guayule and Russian dandelion as alternative sources of natural rubber. Critical Reviews in Biotechnology, 27, 217–231.
Bekaardt C R, Coffelt T A, Fenwick J R, Wiesner L E. 2010. Environmental, irrigation and fertilization impacts on the seed quality of guayule (Parthenium argentatum Gray). Industrial Crops and Products, 31, 427–436.
Bell J L, Burke I C, Neff M M. 2015. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). Journal of Agricultural and Food Chemistry, 63, 593–602.
Belmares H, Jimenez L L, Ortega M. 1980. New rubber peptizers and coatings derived from guayule resin (Parthenium argentatum Gray). Industrial & Engineering Chemistry Research, 19, 107–111.
Benedict C R, Greer P J, Foster M A. 2008. The physiological and biochemical responses of guayule to the low temperature of the Chihuahuan Desert in the biosynthesis of rubber. Industrial Crops and Products, 27, 225–235.
Berthelot K, Lecomte S, Estevez Y, Peruch F. 2014. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins. Biochimie, 106, 1–9.
Brasher M I, Surmacz L, Leong B, Pitcher J, Swiezewska E, Pichersky E, Akhtar T A. 2015. A two-component enzyme complex is required for dolichol biosynthesis in tomato. Plant Journal, 82, 903–914.
Bushman B S, Scholte A A, Cornish K, Scott D J, Brichta J L, Vederas J C, Ochoa O, Michelmore R W, Shintani D K, Knapp S J. 2006. Identification and comparison of natural rubber from two Lactuca species. Phytochemistry, 67, 2590–2596.
Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, Tang Z, Wei X, Yang J, Yuan Q, Wang W, Yang X, Chu H, Wang Q, You C, Ma H, Sun Y, Li Y, Li C, Jiang H, et al. 2021. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373, 1523–1527.
Cao X W, Yan J, Lei J L, Li J, Zhu J B, Zhang H Y. 2017. De novo transcriptome sequencing of MeJA-induced Taraxacum koksaghyz rodin to identify genes related to rubber formation. Scientific Reports, 7, 1569.
Castelblanque L, Balaguer B, Marti C, Rodriguez J J, Orozco M, Vera P. 2017. Multiple facets of laticifer cells. Plant Signaling & Behavior, 12, e1300743.
Chakrabarty R, Qu Y, Ro D K. 2015. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa). Phytochemistry, 113, 121–129.
Chen R, Namimatsu S, Nakadozono Y, Bamba T, Nakazawa Y, Gyokusen K. 2008. Efficient regeneration of Eucommia ulmoides from hypocotyl explant. Biologia Plantarum, 52, 713–717.
Cherian S, Ryu S B, Cornish K. 2019. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal, 17, 2041–2061.
Cho W K, Chen X Y, Uddin N M, Rim Y, Moon J, Jung J H, Shi C, Chu H, Kim S, Kim S W, Park Z Y, Kim J Y. 2009. Comprehensive proteome analysis of lettuce latex using multidimensional protein-identification technology. Phytochemistry, 70, 570–578.
Coffelt T A, Ray D T, Dierig D A. 2015. 100 Years of breeding guayule. Industrial Crops, 9, 351–367.
Cornish K. 2001. Similarities and differences in rubber biochemistry among plant species. Phytochemistry, 57, 1123–1134.
Cornish K. 2017. Alternative natural rubber crops: why should we care? Technology and Innovation, 18, 245–256.
Cornish K, Scott D J, Xie W, Mau C J D, Zheng Y F, Liu X H, Prestwich G D. 2018. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. Phytochemistry, 156, 55–72.
Cornish K, Wood D F, Windle J J. 1999. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 210, 85–96.
Cui S Y, Zhang J C, Chen Y H, Dong M J, Liu G X, Zhang J J, Li L L, Yue H. 2020. Study on degrees of mesomorphic zone of polymer. III. Determination of the degree of crystallinity of Eucommia Ulmoides gum by VTFTIR and VTWAXD. Polymer Testing, 89,106605.
Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R. 2013. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). Plant Molecular Biology, 82, 155–168.
Epping J, Deenen N V, Niephaus E, Stolze A, Fricke J, Huber C, Eisenreich W, Twyman R M, Prüfer D, Gronover C S. 2015. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nature Plants, 1, 15048.
Fox C P. 1913. Wild lettuce rubber. Journal of Industrial and Engineering Chemistry, 5, 477–478.
Habib M A, Yuen G C, Othman F, Zainudin N N, Latiff A A, Ismail M N. 2017. Proteomics analysis of latex from Hevea brasiliensis (clone RRIM 600). Biochemistry and Cell Biology, 95, 232–242.
Hagel J M, Yeung E C, Facchini P J. 2008. Got milk? The secret life of laticifers. Trends in Plant Science, 13, 631–639.
Hallahan D L, Keiper-hrynko N M. 2004. Cis-prenyltransferases from the rubber-producing plants Russian dandelion (Taraxacum kok-saghyz) and sunflower (Helianthus annus). US Patent, Application no. 10/532,013.
He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. 2014. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology, 151, 78–92.
Hepper C M, Audley B G. 1969. The biosynthesis of rubber from beta-hydroxy-beta-methylgluarylcoenzyme A in Hevea brasiliensis latex. Biochemical Journal, 114, 379–386.
Ilgun S, Kupeli Akkol E, Ilhan M, Cicek Polat D, Baldemir Kilic A, Coskun M, Sobarzo-Sanchez E. 2020. Sedative effects of latexes obtained from some Lactuca L. species growing in Turkey. Molecules, 25, 1587.
Kajiura H, Suzuki N, Mouri H, Watanabe N, Nakazawa Y. 2018. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray). Planta, 247, 513–526.
Kirschner J, Stepanek J, Cerny T, De Heer P, van Dijk P J. 2013. Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T-brevicorniculatum (Compositae-Crepidinae). Genetic Resources and Crop Evolution, 60, 455–471.
Kuruvadi S, Rodríguez M, López-Benítez A. 1997. Guayule ploidy levels in a native population. Industrial Crops & Products, 6, 83–87.
Kwon M, Hodgins C L, Haslam T M, Roth S A, Nguyen T D, Yeung E C, Ro D K. 2022. Germacrene a synthases for sesquiterpene lactone biosynthesis are expressed in vascular parenchyma cells neighboring laticifers in lettuce. Plants (Basel), 11, 1192.
Kwon M, Kwon E J, Ro D K. 2016. cis-Prenyltransferase and polymer analysis from a natural rubber perspective. Methods in Enzymology, 576, 121–145.
Li Y, Wei H R, Yang J, Du K, Li J, Zhang Y, Qiu T, Liu Z, Ren Y Y, Song L J, Kang X Y. 2020. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Horticulture Research, 7, 183.
Lin T, Xu X, Du H L, Fan X L, Chen Q W, Hai C Y, Zhou Z J, Su X, Kou L Q, Gao Q, Deng L W, Jiang J S, You H L, Ma Y H, Cheng Z K, Wang G D, Liang C Z, Zhang G M, Yu H, Li J Y. 2022. Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum mongolicum. Science China - Life Sciences, 65, 515–528.
Lin T, Xu X, Ruan J, Liu S Z, Wu S G, Shao X J, Wang X B, Gan L, Qin B, Yang Y S, Cheng Z K, Yang S H, Zhang Z H, Xiong G S, Huang S W, Yu H, Li J Y. 2018. Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. National Science Review, 5, 78–87.
Liu J, Shi C, Shi C C, Li W, Zhang Q J, Zhang Y, Li K, Lu H F, Shi C, Zhu S T, Xiao Z Y, Nan H, Yue Y, Zhu X G, Wu Y, Hong X N, Fan G Y, Tong Y, Zhang D, Mao C L, et al. 2020. The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis. Molecular Plant, 13, 336–350.
Luo Z A, Iaffaldano B J, Zhuang X F, Fresnedo-Ramirez J, Cornish K. 2017. Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Scientific Reports, 7, 9939.
McAssey E V, Gudger E G, Zuellig M P, Burke J M. 2016. Population genetics of the rubber-producing russian dandelion (Taraxacum kok-saghyz). PLoS ONE, 11, e0146417.
Men X, Wang F, Chen G Q, Zhang H B, Xian M. 2019. Biosynthesis of natural rubber: Current state and perspectives. International Journal of Molecular Sciences, 20, 50.
Metcalfe C R. 1967. Distribution of latex in the plant kingdom. Economic Botany, 21, 115–127.
Montoro P, Wu S, Favreau B, Herlinawati E, Labrune C, Martin-Magniette M L, Pointet S, Rio M, Leclercq J, Ismawanto S, Kuswanhadi. 2018. Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness. Scientific Reports, 8, 8483.
Mooibroek H, Cornish K. 2000. Alternative sources of natural rubber. Applied Microbiology and Biotechnology, 53, 355–365.
Nakazawa Y, Bamba T, Takeda T, Uefuji H, Harada Y, Li X H, Chen R, Inoue S, Tutumi M, Shimizu T, Su Y Q, Gyokusen K, Fukusaki E, Kobayashi A. 2009. Production of Eucommia-rubber from Eucommia ulmoides Oliv. (hardy rubber tree). Plant Biotechnology, 26, 71–79.
Nakazawa Y, Takeda T, Suzuki N, Hayashi T, Harada Y, Bamba T, Kobayashi A. 2013. Histochemical study of trans-polyisoprene accumulation by spectral confocal laser scanning microscopy and a specific dye showing fluorescence solvatochromism in the rubber-producing plant, Eucommia ulmoides Oliver. Planta, 238, 549–560.
Nelson A D L, Ponciano G, Mcmahan C, Ilut D C, Pugh N A, Elshikha D E, Hunsaker D J, Pauli D. 2019. Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought. BMC Plant Biology, 19, 494.
Niephaus E, Muller B, van Deenen N, Lassowskat I, Bonin M, Finkemeier I, Prufer D, Schulze Gronover C. 2019. Uncovering mechanisms of rubber biosynthesis in Taraxacum koksaghyz - role of cis-prenyltransferase-like 1 protein. Plant Journal, 100, 591–609.
Oh S K, Kang H, Shin D H, Yang J, Chow K S, Yeang H Y, Wagner B, Breiteneder H, Han K H. 1999. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. Journal of Biological Chemistry, 274, 17132–17138.
Panara F, Lopez L, Daddiego L, Fantini E, Facella P, Perrotta G. 2018. Comparative transcriptomics between high and low rubber producing Taraxacum kok-saghyz R. plants. BMC Genomics, 19, 875.
Peng J N, Su Y Q, Sun Q S, Yue J, Yoshihisa N, Sun R C. 2007. Content and molecular-weight distribution of EU rubber from Eucommia ulmoides leaves. Forest Products Journal, 57, 65–67.
Ponciano G, McMahan C M, Xie W, Lazo G R, Coffelt T A, Collins-Silva J, Nural-Taban A, Gollery M, Shintani D K, Whalen M C. 2012. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. Phytochemistry, 79, 57–66.
Qu Y, Chakrabarty R, Tran H T, Kwon E J, Kwon M, Nguyen T D, Ro D K. 2015. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. Journal of Biological Chemistry, 290, 1898–1914.
Rahman A Y, Usharraj A O, Misra B B, Thottathil G P, Jayasekaran K, Feng Y, Hou S, Ong S Y, Ng F L, Lee L S, Tan H S, Sakaff M K, Teh B S, Khoo B F, Badai S S, Aziz N A, Yuryev A, Knudsen B, Dionne-Laporte A, McHunu N P, et al. 2013. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 14, 75.
Rasutis D, Soratana K, McMahan C, Landis A E. 2015. A sustainability review of domestic rubber from the guayule plant. Industrial Crops and Products, 70, 383–394.
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle D O, Truco M J, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers B C, Michelmore R W. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 8, 14953.
Rousset A, Amor A, Punvichai T, Perino S, Palu S, Dorget M, Pioch D, Chemat F. 2021. Guayule (Parthenium argentatum A. Gray), a renewable resource for natural polyisoprene and resin: Composition, processes and applications. Molecules, 26, 664.
Schloman W W. 2005. Processing guayule for latex and bulk rubber. Industrial Crops and Products, 22, 41–47.
Stolze A, Wanke A, van Deenen N, Geyer R, Prufer D, Gronover C S. 2017. Development of rubber-enriched dandelion varieties by metabolic engineering of the inulin pathway. Plant Biotechnology Journal, 15, 740–753.
Stonebloom S H, Scheller H V. 2019. Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray). BMC Plant Biology, 19, 71.
Swanson C L, Buchanan R A, Otey F H. 1979. Molecular weights of natural rubbers from selected temperate zone plants. Journal of Applied Polymer Science, 23, 743–748.
Tan D G, Hu X W, Fu L L, Kumpeangkeaw A, Ding Z H, Sun X P, Zhang J M. 2017. Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree. Scientific Reports, 7, 3126.
Tan D G, Sun X P, Zhang J M. 2014. Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta, 240, 337–344.
Tang C R, Yang M, Fang Y J, Luo Y F, Gao S H, Xiao X H, An Z W, Zhou B H, Zhang B, Tan X Y, Yeang H Y, Qin Y X, Yang J H, Lin Q, Mei H L, Montoro P, Long X Y, Qi J Y, Hua Y W, He Z L, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2, 16073.
Tangpakdee J, Tanaka Y, Shiba K, Kawahara S, Sakurai K, Suzuki Y. 1997. Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry, 45, 75–80.
Thompson A E, Ray D T, Livingston M, Dierig D A. 1988. Variability of rubber and plant-growth characteristics among single-plant selections from a diverse guayule breeding population. Journal of the American Society for Horticultural Science, 113, 608–611.
Tong Z, Wang D, Sun Y, Yang Q, Meng X, Wang L, Feng W, Li L, Wurtele E S, Wang X. 2017. Comparative proteomics of rubber latex revealed multiple protein species of REF/SRPP family respond diversely to ethylene stimulation among different rubber tree clones. International Journal of Molecular Sciences, 18, 958.
van Treuren R, van Eekelen H, Wehrens R, de Vos R C H. 2018. Metabolite variation in the lettuce gene pool: towards healthier crop varieties and food. Metabolomics, 14, 146.
Unland K, Putter K M, Vorwerk K, van Deenen N, Twyman R M, Prufer D, Gronover C S. 2018. Functional characterization of squalene synthase and squalene epoxidase in Taraxacum koksaghyz. Plant Direct, 2, e00063.
Wang L, Du H Y, Wuyun T N. 2016. Genome-wide identification of micrornas and their targets in the leaves and fruits of Eucommia ulmoides using high-throughput sequencing. Frontiers in Plant Science, 7, 1632.
Wang Q, Xiong Y Z, Dong F P. 2021. Eucommia ulmoides gum-based engineering materials: Fascinating platforms for advanced applications. Journal of Materials Science, 56, 1855–1878.
Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, Meng X, Huang Q, Jin X, Tong Z. 2015. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Scientific Reports, 5, 13778.
Wang Y, Zhan D F, Li H L, Guo D, Zhu J H, Peng S Q. 2019. Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis. Scientific Reports, 9, 12673.
Warren‐Thomas E, Dolman P M, Edwards D P. 2015. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conservation Letters, 8, 230–241.
Wei T, van Treuren R, Liu X, Zhang Z, Chen J, Liu Y, Dong S, Sun P, Yang T, Lan T, Wang X, Xiong Z, Liu Y, Wei J, Lu H, Han S, Chen J C, Ni X, Wang J, Yang H, et al. 2021. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics, 53, 752–760. 
Wei X, Peng P, Peng F, Dong J. 2021. Natural polymer Eucommia ulmoides rubber: A novel material. Journal of Agricultural and Food Chemistry, 69, 3797–3821.
Weiss F E. 1891. The caoutchouc-containing cells of Eucommia ulmoides, oliver. Transactions of the Linnean Society of London. 2nd Series: Botany, 3, 243–254.
Weiss F E. 1899. A gutta-percha plant. Nature, 61, 7.
Wieghaus A, Prufer D, Gronover C S. 2019. Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Taraxacum koksaghyz entails a high-biomass taproot phenotype. PLoS ONE, 14, e0217454.
Wieghaus A, Roelfs K U, Twyman R M, Prufer D, Schulze Gronover C. 2021. Comparative transcriptome analysis in Taraxacum koksaghyz to identify genes that determine root volume and root length. Frontiers in Genetics, 12, 784883.
Wollenweber T E, van Deenen N, Roelfs K U, Prufer D, Gronover C S. 2021. Microscopic and transcriptomic analysis of pollination processes in self-incompatible Taraxacum koksaghyz. Plants (Basel), 10, 555.
Wood D F, Cornish K. 2000. Microstructure of purified rubber particles. International Journal of Molecular Sciences, 161, 435–445.
Wuyun T N, Wang L, Liu H M, Wang X W, Zhang L S, Bennetzen J L, Li T Z, Yang L R, Liu P F, Du L Y, Wang L, Huang M Z, Qing J, Zhu L L, Bao W Q, Li H G, Du Q X, Zhu J L, Yang H, Yang S G, et al. 2018. The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis. Molecular Plant, 11, 429–442.
Xie Q, Ding G, Zhu L, Yu L, Yuan B, Gao X, Wang D, Sun Y, Liu Y, Li H, Wang X. 2019. Proteomic landscape of the mature roots in a rubber-producing grass Taraxacum kok-saghyz. International Journal of Molecular Sciences, 20, 2596.
Yamashita S, Takahashi S. 2020. Molecular mechanisms of natural rubber biosynthesis. Annual Review of Biochemistry, 89, 821–851.
Yamashita S, Yamaguchi H, Waki T, Aoki Y, Mizuno M, Yanbe F, Ishii T, Funaki A, Tozawa Y, Miyagi-Inoue Y, Fushihara K, Nakayama T, Takahashi S. 2016. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. Elife, 5, e19022.
Yan R F. 1991. New progress in study of gutta-percha. Chemistry, 1, 1–6.
Yang Y, Qin B, Chen Q, Zhang J, Zhang L, Nie Q, Liu S. 2022. Comparative full-length transcriptome analysis provides novel insights into the regulatory mechanism of natural rubber biosynthesis in Taraxacum kok-saghyz rodin roots. Industrial Crops and Products, 175, 114278.
Ye J, Han W, Fan R, Liu M, Li L, Jia X. 2019. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to Eu-rubber biosynthesis in Eucommia ulmoides. Genes (Basel), 10, 623.
Zhang L, Su W, Tao R, Zhang W, Chen J, Wu P, Yan C, Jia Y, Larkin R M, Lavelle D, Truco M J, Chin-Wo S R, Michelmore R W, Kuang H. 2017. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nature Communications, 8, 2264.
Zhang Z J, Shen G, Yang Y H, Li C, Chen X Y, Yang X N, Guo X Y, Miao J H, Li L, Lei M. 2022. Metabolic and transcriptomic analyses reveal the effects of ethephon on Taraxacum kok-saghyz rodin. Molecules, 27, 3548.
No related articles found!
No Suggested Reading articles found!