Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (01): 46-53    DOI: 10.1016/S2095-3119(17)61692-7
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis
LI Yan-jun1, SUN Shi-chao1, ZHANG Xin-yu1, WANG Xiang-fei2, LIU Yong-chang1, XUE Fei1, SUN Jie1  
1 Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, P.R.China
2 College of Pharmacy, Shihezi University, Shihezi 832003, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL).  One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points.  Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method.  The results showed that total lignans content in GCF was significantly higher than that in WCF.  The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF.  Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF.  Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF).  This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.
Keywords:  green colored cotton        proteomics        upland cotton              pigment biosynthesis        phenylocumaran benzylic ether redutase-like protein  
Received: 27 December 2016   Accepted:
Fund: 

The research was supported by the National Natural Science Foundation of China (31460360), the National Key Research and Development Program, China (2016YFD0101900), and the Foundation Research Funds for Advanced Talents of Shihezi University, China (RCZX201316).

Corresponding Authors:  Correspondence SUN Jie, Tel: +86-993-2057999, E-mail: sunjie@shzu.edu.cn   
About author:  LI Yan-jun,E-mail:lyj20022002@sina.com.cn

Cite this article: 

LI Yan-jun, SUN Shi-chao, ZHANG Xin-yu, WANG Xiang-fei, LIU Yong-chang, XUE Fei, SUN Jie. 2018. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. Journal of Integrative Agriculture, 17(01): 46-53.

Anderson L, Scilhamer J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresin, 18, 533–537.

Binns A N, Chen R H, Wood H N, Lynn D G. 1987. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proceedings of the National Academy of Sciences of the United States of America, 84, 980–984.

Chen Y, Shi Z W, Huang X M. 2010. Ultrasonic-assisted extraction of total lignans and its content analysis in soybeans. Soybean Science, 29, 168–173. (in Chinese)

Dinkova-Kostova A T, Gang D R, Davin L B, Bedgar D L, Chu A, Lewis N G. 1996. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia - Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. The Journal of Biological Chemistry, 271, 29473–29482.

Dutt Y, Wang X D, Zhu Y G, Li Y Y. 2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding, 123, 145–151.

Fan L, Shi W J, Hu W R, Hao X Y, Wang D M, Yuan H, Yan H Y. 2009. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. Journal of Integrative Plant Biology, 51, 626–637.

Gang D R, Kasahara H, Xia Z Q, Mijnsbrugge K V, Bauw G, Boeruan W, Montafu M V, Davin L B, Lewis N G. 1999. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. The Journal of Biological Chemistry, 274, 7516–7527.

Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 4, 117.

Gygi S P, Rochon Y, Franza B R, Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19, 1720–1730.

Haigler C H, Zhang D, Wilkerson C G. 2005. Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 124, 285–294.

Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 25, 4421–4438.

Jiang J X, Zhang T Z. 2003. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Science, 15, 166–167. (in Chinese)

Li Y J, Wang F X, Wang Y Q, Liu Y C, Zhang X Y, Sun Y Q, Sun J. 2013a. The identification of the proteins in green cotton fiber using a proteomics-based approach. Biotechnology Letters, 35, 1519–1523.

Li Y J, Zhang X Y, Wang F X, Yang C L, Liu F, Xia G X, Sun J. 2013b. A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber. Journal of Proteomics, 78, 374–388.

Lynn D G, Chen R H, Manning K S, Wood H N. 1987. The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division in tobacco cells. Proceeding of the National Academy of Sciences of the United States of America, 84, 615–619.

Murthy M S S. 2001. Never say dye: The story of coloured cotton. Resinance, 11, 29–35.

Pradet-Balade B, Boulme F, Beug H, Mullner E W, Garcia-Sanz J A. 2001. Translation control: Bridging the gap between genomics and proteomics. Trends in Biochemical Sciences, 26, 225–229.

Qiu X M. 2004. Research progress and prospects on naturally-colored cotton. Cotton Science, 16, 249–254. (in Chinese)

Rios J L, Giner R M, Prieto J M. 2002. New findings on the bioactivity of lignans. Studies in Natural Products Chemistry, 26, 183–292.

Schmutz A, Jenny T, Amrhein N, Ryser U. 1993. Caffeic acid and glycerol are constituents of suberin layers in green cotton fibres. Planta, 189, 453–460.

Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 18, 651–664.

Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D, Scheffler J. 2006. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 49, 306–319.

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.

Touillaud M S, Thiebaut A C, Fournier A, Niravong M, Boutron-Ruault M C, Clavel-Chapelon F. 2007. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. Journal of the National Cancer Institute, 99, 475–486.

Turley R B. 2008. Expression of a phenylcoumaran benzylic ether reductase-like protein in the ovules of Gossypium hirsutum. Biologia Plantarum, 52, 759–762.

Udall J A, Swanson J M, Haller K, Rapp R A, Sparks M E, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat A B, Sickler B A, Wilkins T A, Guo J Y, Chen X Y, Scheffler J, Taliercio E, Turley R, McFadden H, Payton P, Klueva N, et al. 2006. A global assembly of cotton ESTs. Genome Research, 16, 441–450.

Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W. 2000. Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta, 211, 502–509.

Weisshaar B, Jenkins G I. 1998. Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology, 1, 251–257.

Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications, 358, 73–78.

Yao Y, Yang Y W, Liu J Y. 2006. An efficient protein for proteomic analysis of developing cotton fiber. Electrophoresis, 27, 4559–4569.

Yatsu L Y, Espelie K E, Kolattukudy P E. 1983. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology, 73, 521–524.

Zhao X Q, Wang X D. 2005. Composition analysis of pigment in colored cotton fiber. Acta Agronomica Sinica, 31, 456–462. (in Chinese)
[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[7] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[8] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[9] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!