Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (01): 46-53    DOI: 10.1016/S2095-3119(17)61692-7
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis
LI Yan-jun1, SUN Shi-chao1, ZHANG Xin-yu1, WANG Xiang-fei2, LIU Yong-chang1, XUE Fei1, SUN Jie1  
1 Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, P.R.China
2 College of Pharmacy, Shihezi University, Shihezi 832003, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL).  One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points.  Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method.  The results showed that total lignans content in GCF was significantly higher than that in WCF.  The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF.  Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF.  Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF).  This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.
Keywords:  green colored cotton        proteomics        upland cotton              pigment biosynthesis        phenylocumaran benzylic ether redutase-like protein  
Received: 27 December 2016   Accepted:
Fund: 

The research was supported by the National Natural Science Foundation of China (31460360), the National Key Research and Development Program, China (2016YFD0101900), and the Foundation Research Funds for Advanced Talents of Shihezi University, China (RCZX201316).

Corresponding Authors:  Correspondence SUN Jie, Tel: +86-993-2057999, E-mail: sunjie@shzu.edu.cn   
About author:  LI Yan-jun,E-mail:lyj20022002@sina.com.cn

Cite this article: 

LI Yan-jun, SUN Shi-chao, ZHANG Xin-yu, WANG Xiang-fei, LIU Yong-chang, XUE Fei, SUN Jie. 2018. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. Journal of Integrative Agriculture, 17(01): 46-53.

Anderson L, Scilhamer J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresin, 18, 533–537.

Binns A N, Chen R H, Wood H N, Lynn D G. 1987. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proceedings of the National Academy of Sciences of the United States of America, 84, 980–984.

Chen Y, Shi Z W, Huang X M. 2010. Ultrasonic-assisted extraction of total lignans and its content analysis in soybeans. Soybean Science, 29, 168–173. (in Chinese)

Dinkova-Kostova A T, Gang D R, Davin L B, Bedgar D L, Chu A, Lewis N G. 1996. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia - Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. The Journal of Biological Chemistry, 271, 29473–29482.

Dutt Y, Wang X D, Zhu Y G, Li Y Y. 2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding, 123, 145–151.

Fan L, Shi W J, Hu W R, Hao X Y, Wang D M, Yuan H, Yan H Y. 2009. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. Journal of Integrative Plant Biology, 51, 626–637.

Gang D R, Kasahara H, Xia Z Q, Mijnsbrugge K V, Bauw G, Boeruan W, Montafu M V, Davin L B, Lewis N G. 1999. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. The Journal of Biological Chemistry, 274, 7516–7527.

Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 4, 117.

Gygi S P, Rochon Y, Franza B R, Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19, 1720–1730.

Haigler C H, Zhang D, Wilkerson C G. 2005. Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 124, 285–294.

Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 25, 4421–4438.

Jiang J X, Zhang T Z. 2003. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Science, 15, 166–167. (in Chinese)

Li Y J, Wang F X, Wang Y Q, Liu Y C, Zhang X Y, Sun Y Q, Sun J. 2013a. The identification of the proteins in green cotton fiber using a proteomics-based approach. Biotechnology Letters, 35, 1519–1523.

Li Y J, Zhang X Y, Wang F X, Yang C L, Liu F, Xia G X, Sun J. 2013b. A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber. Journal of Proteomics, 78, 374–388.

Lynn D G, Chen R H, Manning K S, Wood H N. 1987. The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division in tobacco cells. Proceeding of the National Academy of Sciences of the United States of America, 84, 615–619.

Murthy M S S. 2001. Never say dye: The story of coloured cotton. Resinance, 11, 29–35.

Pradet-Balade B, Boulme F, Beug H, Mullner E W, Garcia-Sanz J A. 2001. Translation control: Bridging the gap between genomics and proteomics. Trends in Biochemical Sciences, 26, 225–229.

Qiu X M. 2004. Research progress and prospects on naturally-colored cotton. Cotton Science, 16, 249–254. (in Chinese)

Rios J L, Giner R M, Prieto J M. 2002. New findings on the bioactivity of lignans. Studies in Natural Products Chemistry, 26, 183–292.

Schmutz A, Jenny T, Amrhein N, Ryser U. 1993. Caffeic acid and glycerol are constituents of suberin layers in green cotton fibres. Planta, 189, 453–460.

Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 18, 651–664.

Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D, Scheffler J. 2006. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 49, 306–319.

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.

Touillaud M S, Thiebaut A C, Fournier A, Niravong M, Boutron-Ruault M C, Clavel-Chapelon F. 2007. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. Journal of the National Cancer Institute, 99, 475–486.

Turley R B. 2008. Expression of a phenylcoumaran benzylic ether reductase-like protein in the ovules of Gossypium hirsutum. Biologia Plantarum, 52, 759–762.

Udall J A, Swanson J M, Haller K, Rapp R A, Sparks M E, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat A B, Sickler B A, Wilkins T A, Guo J Y, Chen X Y, Scheffler J, Taliercio E, Turley R, McFadden H, Payton P, Klueva N, et al. 2006. A global assembly of cotton ESTs. Genome Research, 16, 441–450.

Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W. 2000. Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta, 211, 502–509.

Weisshaar B, Jenkins G I. 1998. Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology, 1, 251–257.

Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications, 358, 73–78.

Yao Y, Yang Y W, Liu J Y. 2006. An efficient protein for proteomic analysis of developing cotton fiber. Electrophoresis, 27, 4559–4569.

Yatsu L Y, Espelie K E, Kolattukudy P E. 1983. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology, 73, 521–524.

Zhao X Q, Wang X D. 2005. Composition analysis of pigment in colored cotton fiber. Acta Agronomica Sinica, 31, 456–462. (in Chinese)
[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[8] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[9] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!