Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (01): 46-53    DOI: 10.1016/S2095-3119(17)61692-7
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis
LI Yan-jun1, SUN Shi-chao1, ZHANG Xin-yu1, WANG Xiang-fei2, LIU Yong-chang1, XUE Fei1, SUN Jie1  
1 Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, P.R.China
2 College of Pharmacy, Shihezi University, Shihezi 832003, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL).  One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points.  Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method.  The results showed that total lignans content in GCF was significantly higher than that in WCF.  The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF.  Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF.  Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF).  This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.
Keywords:  green colored cotton        proteomics        upland cotton              pigment biosynthesis        phenylocumaran benzylic ether redutase-like protein  
Received: 27 December 2016   Accepted:
Fund: 

The research was supported by the National Natural Science Foundation of China (31460360), the National Key Research and Development Program, China (2016YFD0101900), and the Foundation Research Funds for Advanced Talents of Shihezi University, China (RCZX201316).

Corresponding Authors:  Correspondence SUN Jie, Tel: +86-993-2057999, E-mail: sunjie@shzu.edu.cn   
About author:  LI Yan-jun,E-mail:lyj20022002@sina.com.cn

Cite this article: 

LI Yan-jun, SUN Shi-chao, ZHANG Xin-yu, WANG Xiang-fei, LIU Yong-chang, XUE Fei, SUN Jie. 2018. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. Journal of Integrative Agriculture, 17(01): 46-53.

Anderson L, Scilhamer J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresin, 18, 533–537.

Binns A N, Chen R H, Wood H N, Lynn D G. 1987. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proceedings of the National Academy of Sciences of the United States of America, 84, 980–984.

Chen Y, Shi Z W, Huang X M. 2010. Ultrasonic-assisted extraction of total lignans and its content analysis in soybeans. Soybean Science, 29, 168–173. (in Chinese)

Dinkova-Kostova A T, Gang D R, Davin L B, Bedgar D L, Chu A, Lewis N G. 1996. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia - Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. The Journal of Biological Chemistry, 271, 29473–29482.

Dutt Y, Wang X D, Zhu Y G, Li Y Y. 2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding, 123, 145–151.

Fan L, Shi W J, Hu W R, Hao X Y, Wang D M, Yuan H, Yan H Y. 2009. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. Journal of Integrative Plant Biology, 51, 626–637.

Gang D R, Kasahara H, Xia Z Q, Mijnsbrugge K V, Bauw G, Boeruan W, Montafu M V, Davin L B, Lewis N G. 1999. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. The Journal of Biological Chemistry, 274, 7516–7527.

Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 4, 117.

Gygi S P, Rochon Y, Franza B R, Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19, 1720–1730.

Haigler C H, Zhang D, Wilkerson C G. 2005. Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 124, 285–294.

Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 25, 4421–4438.

Jiang J X, Zhang T Z. 2003. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Science, 15, 166–167. (in Chinese)

Li Y J, Wang F X, Wang Y Q, Liu Y C, Zhang X Y, Sun Y Q, Sun J. 2013a. The identification of the proteins in green cotton fiber using a proteomics-based approach. Biotechnology Letters, 35, 1519–1523.

Li Y J, Zhang X Y, Wang F X, Yang C L, Liu F, Xia G X, Sun J. 2013b. A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber. Journal of Proteomics, 78, 374–388.

Lynn D G, Chen R H, Manning K S, Wood H N. 1987. The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division in tobacco cells. Proceeding of the National Academy of Sciences of the United States of America, 84, 615–619.

Murthy M S S. 2001. Never say dye: The story of coloured cotton. Resinance, 11, 29–35.

Pradet-Balade B, Boulme F, Beug H, Mullner E W, Garcia-Sanz J A. 2001. Translation control: Bridging the gap between genomics and proteomics. Trends in Biochemical Sciences, 26, 225–229.

Qiu X M. 2004. Research progress and prospects on naturally-colored cotton. Cotton Science, 16, 249–254. (in Chinese)

Rios J L, Giner R M, Prieto J M. 2002. New findings on the bioactivity of lignans. Studies in Natural Products Chemistry, 26, 183–292.

Schmutz A, Jenny T, Amrhein N, Ryser U. 1993. Caffeic acid and glycerol are constituents of suberin layers in green cotton fibres. Planta, 189, 453–460.

Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 18, 651–664.

Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D, Scheffler J. 2006. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 49, 306–319.

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.

Touillaud M S, Thiebaut A C, Fournier A, Niravong M, Boutron-Ruault M C, Clavel-Chapelon F. 2007. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. Journal of the National Cancer Institute, 99, 475–486.

Turley R B. 2008. Expression of a phenylcoumaran benzylic ether reductase-like protein in the ovules of Gossypium hirsutum. Biologia Plantarum, 52, 759–762.

Udall J A, Swanson J M, Haller K, Rapp R A, Sparks M E, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat A B, Sickler B A, Wilkins T A, Guo J Y, Chen X Y, Scheffler J, Taliercio E, Turley R, McFadden H, Payton P, Klueva N, et al. 2006. A global assembly of cotton ESTs. Genome Research, 16, 441–450.

Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W. 2000. Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta, 211, 502–509.

Weisshaar B, Jenkins G I. 1998. Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology, 1, 251–257.

Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications, 358, 73–78.

Yao Y, Yang Y W, Liu J Y. 2006. An efficient protein for proteomic analysis of developing cotton fiber. Electrophoresis, 27, 4559–4569.

Yatsu L Y, Espelie K E, Kolattukudy P E. 1983. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology, 73, 521–524.

Zhao X Q, Wang X D. 2005. Composition analysis of pigment in colored cotton fiber. Acta Agronomica Sinica, 31, 456–462. (in Chinese)
[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!