Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 114-131    DOI: 10.1016/j.jia.2023.12.003
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting

Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang#, Wenjing Zhang#

College of Agronomy, Anhui Agricultural University/Key Laboratory of Wheat Biology and Genetic Improvement in South Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
 Highlights 
Low temperature during booting decreased the starch synthase activity of wheat grains, resulting in a reduction in the content of amylose and amylopectin as well as the plumpness of the grains.
The differentially expressed proteins in wheat grains after low temperature during booting are mainly involved in starch and sucrose metabolism and protein processing in endoplasmic reticulum.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

春季低温(LT)已成为制约小麦生长发育的主要非生物胁迫之一。为研究小麦籽粒发育对孕穗期低温胁迫的响应机制,进行了多种分析,包括孕穗期低温处理后小麦籽粒形态观察、淀粉合成酶活性测定以及直链淀粉和支链淀粉含量测定。此外,利用串联质谱标签技术(TMT)进行了蛋白质组学分析。结果表明,低温胁迫后小麦籽粒的饱满度下降。此外,蔗糖合酶(SuS, EC 2.4.1.13)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPase, EC 2.7.7.27)活性显著下降,导致直链淀粉和支链淀粉含量显著降低。通过蛋白质组学分析,共鉴定出509个差异表达蛋白(DEPs)。GO富集分析表明,分子功能中的营养储存库活性蛋白差异倍数最大,并且上调表达的贮藏蛋白(SSP)在籽粒对低温胁迫及后续伤害的响应中起着积极作用。KEGG富集分析表明,低温胁迫降低了蔗糖和淀粉代谢途径中蔗糖磷酸合成酶(SPS)、葡萄糖-1-磷酸腺苷转移酶(glgC))β-呋喃果糖苷酶(FFase)DEPs的表达,从而影响了籽粒淀粉的合成。此外,在内质网途径的蛋白质加工中发现了许多热休克蛋白(HSPs),这些HSPs可以抵抗低温胁迫带来的一些损伤。这些研究结果为阐明春季低温胁迫小麦产量形成的潜在机理提供了新的理论基础。



Abstract  

Low temperature (LT) in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.  Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.  These included morphological observation, measurements of starch synthase activity, and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.  Additionally, proteomic analysis was performed using tandem mass tags (TMT).  Results showed that the plumpness of wheat grains decreased after LT stress.  Moreover, the activities of sucrose synthase (SuS, EC 2.4.1.13) and ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) exhibited a significant reduction, leading to a significant reduction in the contents of amylose and amylopectin.  A total of 509 differentially expressed proteins (DEPs) were identified by proteomics analysis.  The Gene Ontology (GO) enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions, and the up-regulated seed storage protein (SSP) played an active role in the response of grains to LT stress and subsequent damage.  The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase (SPS), glucose-1-phosphate adenylyltransferase (glgC), and β-fructofuranosidase (FFase) in sucrose and starch metabolic pathways, thus affecting the synthesis of grain starch.  In addition, many heat shock proteins (HSPs) were found in the protein processing in endoplasmic reticulum pathways, which can resist some damage caused by LT stress.  These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield development after exposure to LT stress in spring.

Keywords:  low temperature at booting       wheat        grain        starch synthesis        proteomics  
Received: 21 July 2023   Accepted: 10 November 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (32372223), the National Key Research and Development Program of China (2022YFD2301404), the College Students’ Innovation and Entrepreneurship Training Program of Anhui Province, China (S202210364136), and the Natural Science Research Project of Anhui Educational Committee, China (2023AH040133).



About author:  Anmin Zhang, Tel: +86-551-65786213, E-mail: zhanganmin1998 @163.com; #Correspondence Wenjing Zhang, Tel: +86-551-65786213, E-mail: zhangwenjing79@126.com; Zhenglai Huang, Tel: +86-551-65786213, E-mail: xdnyyjs@163.com

Cite this article: 

Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang. 2025. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting. Journal of Integrative Agriculture, 24(1): 114-131.

Barlow K M, Christy B P, O’leary G J, Riffkin P A, Nuttall J G. 2015. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research171, 109–119.

Bo C, Geng X, Zhang J, Sai L, Zhang Y, Yu G, Zhang Z, Liu K, Du Z, Peng C, Jia Q, Shao H. 2020. Comparative proteomic analysis of silica-induced pulmonary fibrosis in rats based on tandem mass tag (TMT) quantitation technology. PLoS ONE15, e0241310.

Cheng W, Li D, Wang Y, Liu Y, Zhu-Salzman K. 2016. Cloning of heat shock protein genes (hsp70hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellanaJournal of Insect Physiology95, 66–77.

Crimp S J, Zheng B, Khimashia N, Gobbett D L, Chapman S, Howden S M, Nicholls N. 2016. Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop and Pasture Science67, 801–811.

Fahy B, Siddiqui H, David L C, Powers S J, Borrill P, Uauy C, Smith A M. 2018. Final grain weight is not limited by the activity of key starch-synthesising enzymes during grain filling in wheat. Journal of Experimental Botany69, 5461–5475.

Fan Y, Qin B, Yang J, Ma L, Cui G, He W, Tang Y, Zhang W, Ma S, Ma C, Huang Z. 2023. Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis. Journal of Integrative Agriculture23, 536–550.

Farooq M, Hussain M, Wakeel A, Siddique K H M. 2015. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development35, 461–481.

Feng K, Li Y, Lin J, Zhao Y, Shi P, Li Z, Li W. 2018. Morphological and cytological studies on wheat grain in response to early high temperature stress after anthesis. Journal of Shihezi University (Natural Science), 36, 321–329. (in Chinese)

Frederiks T M, Christopher J T, Sutherland M W, Borrell A K. 2015. Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. Journal of Experimental Botany66, 3487–3498.

Gong M, Zhang H, Wu D, Zhang Z, Zhang J, Bao D, Yang Y. 2021. Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceusBMC Genomics22, 1–19.

Grigorova B, Vaseva I I, Demirevska K, Feller U. 2011. Expression of selected heat shock proteins after individually applied and combined drought and heat stress. Acta Physiologiae Plantarum33, 2041–2049.

Gu L, Hanson P J, Post W M, Kaiser D P, Yang B, Nemani R, Pallardy S G, Meyers T. 2008. The 2007 eastern US spring freeze: Increased cold damage in a warming world? Bioscience58, 253–262.

Guo J, Qu L, Hu Y, Lu W, Lu D. 2021. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC Plant Biology21, 1–14.

Hildebrandt T M, Nesi A N, Araújo W L, Braun H P. 2015. Amino acid catabolism in plants. Molecular Plant8, 1563–1579.

Impa S M, Vennapusa A R, Bheemanahalli R, Sabela D, Boyle D, Walia H, Jagadish S V K. 2020. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. PlantCell & Environment43, 431–447.

Kawakatsu T, Hirose S, Yasuda H, Takaiwa F. 2010. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiology154, 1842–1854.

Kim K H, Kim J Y. 2021. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants10, 2282.

Leroch M, Neuhaus H E, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, Tjaden J. 2008. Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of ArabidopsisThe Plant Cell20, 438–451.

Li C, Yang J, Zhu M, Ding J, Zhu X, Zhou G, Guo W. 2022. Urea amendment alleviated morphological and physiological damages and yield loss of winter wheat subjected to low temperature stress at jointing stage. Plant Growth Regulation98, 589–598.

Li X, Pu H, Liu F, Zhou Q, Cai J, Dai T, Cao W, Jiang D. 2015. Winter wheat photosynthesis and grain yield responses to spring freeze. Agronomy Journal107, 1002–1010.

Lu H, Hu Y, Wang C, Liu W, Ma G, Han Q, Ma D. 2019. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Frontiers in Plant Science10, 1414.

Ma Z, Yao W, Chan C C, Kannabiran C, Wawrousek E, Hejtmancik F. 2016. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochimica et Biophysica Acta (BBA) (Molecular Basis of Disease), 1862, 1214–1227.

Moriguchi T, Yamaki S. 1988. Purification and characterization of sucrose synthase from peach (Prunus persica) fruit. Plant and Cell Physiology29, 1361–1366.

Mukherjee S, Liu A, Deol K K, Kulichikhin K, Stasolla C, Brule-Babel A, Ayele B T. 2015. Transcriptional coordination and abscisic acid mediated regulation of sucrose transport and sucrose-to-starch metabolism related genes during grain filling in wheat (Triticum aestivum L.). Plant Science240, 143–160.

Nakamura Y, Yuki K, Park S Y, Ohya T. 1989. Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology30, 833–839.

Nemati F, Ghanati F, Gavlighi H A, Sharifi M. 2018. Comparison of sucrose metabolism in wheat seedlings during drought stress and subsequent recovery. Biologia Plantarum62, 595–599.

Prathap V, Ali K, Singh A, Vishwakarma C, Krishnan V, Chinnusamy V, Tyagi A. 2019. Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry142, 440–451.

Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. 2014. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science60, 11–24.

Rosa M, Prado C, Podazza G, Interdonato R, González J A, Hilal M, Prado F E. 2009. Soluble sugars - Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior4, 388–393.

Rosental L, Nonogaki H, Fait A. 2014. Activation and regulation of primary metabolism during seed germination. Seed Science Research24, 1–15.

Schmidt M A, Barbazuk W B, Sandford M, May G, Song Z, Zhou W, Nikolau B J, Herman E M. 2011. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiology156, 330–345.

Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, Roy A, Chakraborty A, Singh I K. 2022. How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. International Journal of Molecular Sciences23, 1995.

Skinner D Z. 2014. Time and temperature interactions in freezing tolerance of winter wheat. Crop Science54, 1523–1529.

Tetlow I J, Bertoft E. 2020. A review of starch biosynthesis in relation to the building block-backbone model. International Journal of Molecular Sciences21, 7011.

Tetlow I J, Emes M J. 2017. Starch biosynthesis in the developing endosperms of grasses and cereals. Agronomy7, 81.

Thakur P, Kumar S, Malik J A, Berger J D, Nayyar H. 2010. Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany67, 429–443.

Verma V C, Agrawal S, Kumar A, Jaiswal J P. 2020. Starch content and activities of starch biosynthetic enzymes in wheat, rice and millets. Journal of Pharmacognosy and Phytochemistry9, 1211–1218.

Wang C, Wang G, Wen X, Qu X, Zhang Y, Zhang X, Deng P, Chen C, Ji W, Zhang H. 2022a. Characteristics and expression analysis of invertase gene family in common wheat (Triticum aestivum L.). Genes14, 41.

Wang C, Zhang M, Zhou J, Gao X, Zhu S, Yuan L, Hou X, Liu T, Chen G, Tang X, Shan G, Hou J. 2022b. Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics23, 1–16.

Wang L, Cui N, Zhang K Y, Fan H Y, Li T L. 2013. Research advance of sucrose phosphate synthase (SPS) in higher plant. International Journal of Agriculture and Biology15, 1221–1226.

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science9, 244–252.

Tan-Wilson A L, Wilson K A. 2012. Mobilization of seed protein reserves. Physiologia Plantarum145, 140–153.

Wiśniewski J R, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nature Methods6, 359–362.

Xiao L, Liu B, Zhang H, Gu J, Fu T, Asseng S, Liu L, Tang L, Cao W, Zhu Y. 2021. Modeling the response of winter wheat phenology to low temperature stress at elongation and booting stages. Agricultural and Forest Meteorology303, 108376.

Xu H, Hou K, Fang H, Liu Q, Wu Q, Lin F, Deng R, Zhang L, Chen X, Li J. 2023. Twice-split application of phosphorus alleviates low temperature impacts on wheat by greater spikelet development and setting. Journal of Integrative Agriculture22, 3667–3680.

You C, Chen L, He H, Wu L, Wang S, Ding Y, Ma C. 2017. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC Plant Biology17, 1–20.

Zhang C, Gu K, Gu D, Zhang S, Wu J. 2021. Quantifying the effect of low-temperature events on the grain quality formation of wheat. Journal of Cereal Science100, 103257.

Zhang N, Zhang L, Zhao L, Ren Y, Cui D, Chen J, Wang Y, Yu P, Chen F. 2017. iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat. Scientific Reports7, 7524.

Zhang W, Wang J, Huang Z, Mi L, Xu K, Wu J, Fan Y, Ma S, Jiang D. 2019. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Frontiers in Plant Science10, 498.

Zhang W, Zhao Y, Li L, Xu X, Yang L, Luo Z, Wang B, Ma S, Fan Y, Huang Z. 2021. The effects of short-term exposure to low temperatures during the booting stage on starch synthesis and yields in wheat grain. Frontiers in Plant Science12, 684784.

Zhang W H, Zhou Y, Dibley K E, Tyerman S D, Furbank R T, Patrick J W. 2007. Nutrient loading of developing seeds. Functional Plant Biology34, 314–331.

Zhang Y, Hu X, Juhasz A, Islam S, Yu Z, Zhao Y, Li G, Ding W, Ma W. 2020. Characterising avenin-like proteins (ALPs) from albumin/globulin fraction of wheat grains by RP-HPLC, SDS-PAGE, and MS/MS peptides sequencing. BMC Plant Biology20, 1–19.

Zhang Y, Pan J, Huang X, Guo D, Lou H, Hou Z, Su M, Liang R, Xie C, You M, Li B. 2017. Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports7, 3468.

Zhao K, Tao Y, Liu M, Yang D, Zhu M, Ding J, Zhu X, Guo W, Zhou G, Li C. 2022. Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? Journal of Cereal Science103, 103408.

Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. 2016. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS ONE11, e0146242.

[1] Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An. Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2025, 24(1): 72-84.
[2] Qing Liang, Xujing Yang, Yuheng Huang, Zhenwei Yang, Meichen Feng, Mingxing Qing, Chao Wang, Wude Yang, Zhigang Wang, Meijun Zhang, Lujie Xiao, Xiaoyan Song. Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2941-2954.
[3] YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. Multi-omics-driven development of alternative crops for natural rubber production[J]. >Journal of Integrative Agriculture, 2023, 22(4): 959-971.
[4] LIU Ting-ting, XU Miao-ze, GAO Shi-qi, ZHANG Yang, HU Yang, JIN Peng, CAI Lin-na, CHENG Ye, CHEN Jian-ping, YANG Jian, ZHONG Kai-li. Genome-wide identification and analysis of the regulation wheat DnaJ family genes following wheat yellow mosaic virus infection[J]. >Journal of Integrative Agriculture, 2022, 21(1): 153-169.
No Suggested Reading articles found!