Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (8): 1213-1221    DOI: 10.1016/S1671-2927(11)60112-0
PHYSIOLOGY & BIOCHEMISTRY · TILLAGE · CULTIVATION Advanced Online Publication | Current Issue | Archive | Adv Search |
Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.
Department of Botany, Aligarh Muslim University
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Sodium alginate is a polysaccharide that is largely obtained from the brown algae (Sargassum sp.). It has been used as awonderful growth promoting substance in its depolymerized form for various plants. The aim of this study was to find outthe effects of various concentrations of ?-irradiated sodium alginate (ISA), viz., deionized water (control, T0), 20 (T1),40 (T2), 60 (T3), 80 (T4), and 100 ppm (T5) on the agricultural performance of Catharanthus roseus L. (Rosea) in terms ofgrowth attributes, photosynthesis, physiological activities, and alkaloid production. The present work revealed that ISAapplied as leaf-sprays at concentrations from 20 to 100 ppm might improve growth, photosynthesis, physiological activities,and alkaloid production in C. roseus L. significantly. Of the various ISA concentrations, 80 ppm proved to be the best onecompared to other concentrations applied.
Keywords:  γ-irradiated sodium alginate      plant growth promoter      chlorophyll and carotenoids content      carbonic anhydrase and nitrate reductase activities      growth attributes      photosynthesis  
Received: 02 August 2010   Accepted:
CLC Number:  null  
Corresponding Authors:  Correspondence Mohd Naeem, Ph D, Mobile: +91-9719341207, E-mail: naeem_phd@yahoo.co.in   

Cite this article: 

Mohd Idrees, Mohd Naeem, Masidur Alam, Tariq Aftab, Nadeem Hashmi, Mohd Masroor Akhtar Khan, Moinuddin , Lalit Varshney. 2011. Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.. Journal of Integrative Agriculture, 10(8): 1213-1221.

[1]      Afaq S H, Tajuddin, Siddiqui M M H. 1994. Standardization ofHerbal Drugs. Publication Division, Aligarh MuslimUniversity, Aligarh, India.Akimoto C, Aoyagi H, Tanaka H. 1999. Endogenous elicitor-likeeffect of alginate on physiological activities of plant cells.Applied Microbiology and Biotechnology, 52, 429-436.
[2]      Anthony J, Gabapathy A, Coothan K V, Streenivasan P P, ArjunaR, Palaninathan V. 2007. Beneficial effects of sulphatedpolysaccharides from Saragassum wightii againstmitochondrial alterations induced by cyclosporine A in ratkidney. Molecular Nutrition and Food Research, 51, 1413-1422.
[3]      Dwivedi R S, Randhawa N S. 1974. Evaluation of rapid test forthe hidden hunger of zinc in plants. Plant and Soil, 40, 445-451.
[4]      Hien N Q, Nagasawa N, Tham L X, Yoshii F, Dang V H, MitomoH, Makuuchi K, Kume T. 2000. Growth promotion of plantswith depolymerised alginates by irradiation. Radiation Physicsand Chemistry, 59, 97-101.
[5]      Hu X, Jiang X, Hwang H, Liu S, Guan H. 2004. Promotiveeffects of alginate-derived oligosaccharide on maize seedgermination. Journal of Applied Phycology, 16, 73-76.
[6]      Idrees M, Naeem M, Khan M M A. 2010. The superiority of cv.‘rosea’ over cv. ‘alba’ of periwinkle (Catharanthus roseusL.) in alkaloid production and other physiological attributes.Turkish Journal of Biology, 32, 81-88.
[7]      Jamsheer M K. 2010. Response of beetroot (Beta vulgaris L.) tothe application of phosphorus and gamma-irradiated sodiumalginate. MSc thesis, Aligarh Muslim University, Aligarh,India.Jaworski E J. 1971. Nitrate reductase assay in intact plant tissues.Biochemical and Biophysical Research Communications, 43,1247-1279.
[8]      Khan Z H, Khan M M A, Aftab T, Idrees M, Naeem M,Moinuddin. 2011. Influence of alginate oligosaccharides ongrowth, yield and alkaloid production of opium poppy(Papaver somniferum L.). Frontiers of Agriculture in China,5, 122-127.
[9]      Kume T, Nagasawa N, Yoshii F. 2002. Utilization ofcarbohydrates by radiation processing. Radiation Physicsand Chemistry, 63, 625-627.
[10]   Lichtenthaler H K, Buschmann C. 2001. Chlorophylls andcarotenoids: measurement and characterization by UV-VISspectroscopy. In: Wrolstad R E, ed., Current Protocols inFood Analytical Chemistry. John Wiley and Sons, New York.pp. F4.3.1-F4.3.8.Luan L Q, Ha V T, Nagasawa N, Kume T, Yoshii F, NakanishiT M. 2005. Biological effect of irradiated chitosan on plantsin vitro. Biotechnology and Applied Biochemistry, 41, 49-57.
[11]   Luan L Q, Hien N Q, Nagasawa N, Kume T, Yoshii F, NakanishiT M. 2003. Biological effect of radiation-degraded alginateon flower plants in tissue culture. Biotechnology and AppliedBiochemistry, 38, 283-288.
[12]   Luan L Q, Nagasawa N, Ha V T T, Hien N Q, Nakanishi T M.2009. Enhancement of plant growth stimulation activity ofirradiated alginate by fractionation. Radiation Physics andChemistry, 78, 796-799.
[13]   Mollah M Z I, Khan M A, Khan R A. 2009. Effect of gammairradiated sodium alginate on red amaranth (Amaranthuscruentus L.) as growth promoter. Radiation Physics andChemistry, 78, 61-64.
[14]   Nagasawa N, Mitomo H, Yoshii F, Kume T. 2000. Rradiationinduced degradation of sodium alginate. Polymer Degradationand Stability, 69, 279-285.
[15]   Natsume M, Kamao Y, Hirayan M, Adachi J. 1994. Isolationand characterization of alginate derived oligosaccharides withroot growth promoting activities. Carbohydrate Research,258, 187-197.
[16]   Nwafor S V, Akah P A, Okali C O. 2001. Potential of plantproducts as anticancer agents. Journal of Natural Remedy, 1,75-87.
[17]   Qureshi A H. 2010. Effect of nitrogen and gamma-irradiatedsodium alginate on the efficiency of beetroot (Beta vulgarisL.). MSc thesis, Aligarh Muslim University, Aligarh, India.Sarfaraz A, Naeem M, Nasir S, Idrees M, Aftab T, Hashmi N,Khan M M A, Moinuddin, Varshney L. 2011. An evaluationof the effects of irradiated sodium alginate on the growth,physiological activities and essential oil production of fennel(Foeniculum vulgare Mill.). Journal of Medicinal PlantResearch, 5, 15-21.
[18]   Singh D V, Maithy A, Verma R K, Gupta M M, Kumar S. 2000.Simultaneous determination of Catharanthus alkaloids usingreserved phase high performance liquid chromatography.Journal of Liquid Chromatography & Related Technologies, 23, 601-607.
[19]   Thama L X, Nagasawab N, Matsuhashib S, Ishiokab N S, Itob T,Kume T. 2001. Effect of radiation-degraded chitosan on plantsstressed with vanadium. Radiation Physics and Chemistry,61, 171-175.
[20]   Tomoda Y, Umemura K, Adachi T. 1994. Promotion of barleyroot elongation under hypoxic conditions by alginate lyaselysate(A.L.L.). Bioscience, Biotechnology and Biochemistry,58, 203-203.
[21]   Watson D J. 1947. Comparative physiological studies on thegrowth of the field crops. Annals of Botany, 11, 42-76.
[22] Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y,Kimura A, Murata K. 1993. Promotion of germination andshoot elongation of some plants by alginate oilgomersprepared with bacterial alginate lyase. Journal ofFermentation and Bioengineering, 75, 68-70.
[1] Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long. Functional identification of Medicago truncatula MtRAV1 in regulating growth and development[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1944-1957.
[2] Fei Jin, Lei Xu, Zhihu Lü, Yuchuan Zhang, Qinghua Yang, Qingfang Han, Baili Feng. Combined physiological and pathway analysis revealed the effect of Sporisorium destruens on photosynthesis in broomcorn millet (Panicum miliaceum L.) [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1065-1079.
[3] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[4] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[5] Xinyu Man, Sha Tang, Yu Meng, Yanjia Gong, Yanqing Chen, Meng Wu, Guanqing Jia, Jun Liu, Xianmin Diao, Xiliu Cheng. Convergent and divergent signaling pathways in C3 rice and C4 foxtail millet crops in response to salt stress[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3719-3738.
[6] Xinlong Gao, Fan Li, Yikun Sun, Jiaqi Jiang, Xiaolin Tian, Qingwen Li, Kaili Duan, Jie Lin, Huiquan Liu, Qinhu Wang.

Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1238-1258.

[7] WANG Kang-kang, JIN Meng-jiao, LI Jing-jing, REN Ye-song, LI Zai-yuan, REN Xing-hai, HUANG Cong, WAN Fang-hao, QIAN Wan-qiang, LIU Bo.

The evolution and diurnal expression patterns of photosynthetic pathway genes of the invasive alien weed, Mikania micrantha [J]. >Journal of Integrative Agriculture, 2024, 23(2): 590-604.

[8] XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2397-2411.
[9] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[10] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[11] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[12] WU Han-yu, QIAO Mei-yu, ZHANG Wang-feng, WANG Ke-ru, LI Shao-kun, JIANG Chuang-dao. Systemic regulation of photosynthetic function in maize plants at graining stage under vertically heterogeneous light environment[J]. >Journal of Integrative Agriculture, 2022, 21(3): 666-676.
[13] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
[14] MA Ming-yang, LIU Yang, ZHANG Yao-wen, QIN Wei-long, WANG Zhi-min, ZHANG Ying-hua, LU Cong-ming, LU Qing-tao. In situ measurements of winter wheat diurnal changes in photosynthesis and environmental factors reveal new insight into photosynthesis improvement by super-high-yield cultivation[J]. >Journal of Integrative Agriculture, 2021, 20(2): 527-539.
[15] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
No Suggested Reading articles found!