Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (04): 1238-1258    DOI: 10.1016/j.jia.2023.06.014
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight

Xinlong Gao, Fan Li, Yikun Sun, Jiaqi Jiang, Xiaolin Tian, Qingwen Li, Kaili Duan, Jie Lin, Huiquan Liu, Qinhu Wang#

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由禾谷镰刀菌等真菌引起的赤霉病是最具破坏性的小麦病害之一。该病害除了直接影响小麦产量外,发病籽粒中残留的脱氧雪腐镰刀菌烯醇(DON毒素)也极大地威胁着人畜健康。西农979一个广泛栽培的优质高产小麦品种,对赤霉病表现为中抗。然而,其抗赤霉病的机制尚不清楚。为了探究西农979对赤霉病的抗性机制,我们以同样具有小偃6谱系的高感赤霉病品种小偃22为对照,对二者进行了比较转录组学分析和实验验证。我们发现西农979对赤霉病的抗性由两道防线组成。第一道防线是组成型的,在没有感染病原菌的情况下,西农979中木质素和茉莉酸合成通路等基础防卫基因的表达增强。第二道防线是受病原菌诱导的,在禾谷镰刀菌侵染时,尽管西农979和小偃22的光合作用和生物胁迫反应均受到一定程度的抑制,但西农979中二者的抑制更弱。此外,对互作过程中真菌基因的表达分析结果表明,在侵染早期,西农979基础防卫的增强导致禾谷镰刀菌侵染相关的碳水化合物活性酶(CAZY)基因、效应子(CSEP)基因和次生代谢(SM)基因(包括DON毒素合成基因)的表达受到了一定程度的抑制。这些结果为抗赤霉病小麦品种西农979中基础防卫的增强提供了直接证据。西农979对赤霉病的抗性形成可能与育种策略相关,例如抗倒伏性状的选择可能导致了木质素合成基因基础表达的增强,而高产量性状的选择可能导致了逆境下光系统基因表达的增强。该研究将有助于我们进一步了解小麦-禾谷镰刀菌互作机制,并为赤霉病抗病育种提供了新的见解。



Abstract  

Fusarium head blight (FHB), mainly caused by the fungal pathogen Fusarium graminearum, is one of the most destructive wheat diseases.  Besides directly affecting the yield, the mycotoxin residing in the kernel greatly threatens the health of humans and livestock.  Xinong 979 (XN979) is a widely cultivated wheat elite with high yield and FHB resistance.  However, its resistance mechanism remains unclear.  In this study, we studied the expression of genes involved in plant defense in XN979 by comparative transcriptomics.  We found that the FHB resistance in XN979 consists of two lines of defense.  The first line of defense, which is constitutive, is knitted via the enhanced basal expression of lignin and jasmonic acid (JA) biosynthesis genes.  The second line of defense, which is induced upon Fgraminearum infection, is contributed by the limited suppression of photosynthesis and the struggle of biotic stress-responding genes.  Meanwhile, the effective defense in XN979 leads to an inhibition of fungal gene expression, especially in the early infection stage.  The formation of the FHB resistance in XN979 may coincide with the breeding strategies, such as selecting high grain yield and lodging resistance traits.  This study will facilitate our understanding of wheat–Fgraminearum interaction and is insightful for breeding FHB-resistant wheat.

Keywords:  Fusarium head blight        Xinong 979        lignin        jasmonic acid        photosynthesis        Fusarium graminearum
  
Received: 17 January 2023   Accepted: 28 April 2023
Fund: We thank Ping Xiang (Northwest A&F University, China) for help with the analysis of JA contents, and Drs.  Cong Jiang, Guanghui Wang, and Ming Xu (Northwest A&F University) for fruitful discussions.  This work was supported by the grants from the National Key R&D Program of China (2022YFD1400100), the National Natural Science Foundation of China (32072505 and 31701747), the Chinese Universities Scientific Fund (2452020222), and the National Innovation and Entrepreneurship Training Program for College Students, China (202110712255).
About author:  #Correspondence Qinhu Wang, E-mail: wangqinhu@nwafu.edu.cn

Cite this article: 

Xinlong Gao, Fan Li, Yikun Sun, Jiaqi Jiang, Xiaolin Tian, Qingwen Li, Kaili Duan, Jie Lin, Huiquan Liu, Qinhu Wang. 2024.

Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight . Journal of Integrative Agriculture, 23(04): 1238-1258.

Anderson J P, Gleason C A, Foley R C, Thrall P H, Burdon J B, Singh K B. 2010. Plants versus pathogens: An evolutionary arms race. Functional Plant Biology, 37, 499–512.

Antico C J, Colon C, Banks T, Ramonell K M. 2012. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology, 7, 48–56.

Bai G, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135–161.

Bai G H, Desjardins A E, Plattner R D. 2002. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia, 153, 91–98.

Bari R, Jones J D G. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473–488.

Bauer S, Grossmann S, Vingron M, Robinson P N. 2008. Ontologizer 2.0 - a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 24, 1650–1651.

Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8, 521–539.

Cantalapiedra C P, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. EggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution, 38, 5825–5829.

Chen Y, Kistler H C, Ma Z. 2019. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology, 57, 15–39.

Cui H, Tsuda K, Parker J E. 2015. Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487–511.

Dai X, Huang Y, Xue X, Yu S, Li T, Liu H, Yang L, Zhou Y, Li H, Zhang H. 2022. Effects of Fhb1, Fhb2 and Fhb5 on Fusarium head blight resistance and the development of promising lines in winter wheat. International Journal of Molecular Sciences, 23, 15047.

Danecek P, Bonfield J K, Liddle J, Marshall J, Ohan V, Pollard M O, Whitwham A, Keane T, McCarthy S A, Davies R M. 2021. Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008.

Dean R, Van Kan J A L, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.

Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z. 2011. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE, 6, e19008.

Doughari J H. 2015. An overview of plant immunity. Journal of Plant Pathology & Microbiology, 6, 1000322.

Dweba C, Figlan S, Shimelis H, Motaung T, Sydenham S, Mwadzingeni L, Tsilo T. 2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114–122.

Eitas T K, Dangl J L. 2010. NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology, 13, 472–477.

Esse H P, Reuber T L, Does D. 2019. Genetic modification to improve disease resistance in crops. New Phytologist, 225, 70–86.

Figueroa M, Hammond-Kosack K E, Solomon P S. 2018. A review of wheat diseases - a field perspective. Molecular Plant Pathology, 19, 1523–1536.

Foroud N, Ouellet T, Laroche A, Oosterveen B, Jordan M, Ellis B, Eudes F. 2012. Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathology, 61, 296–314.

Gardiner D M, Kazan K, Praud S, Torney F J, Rusu A, Manners J M. 2010. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biology, 10, 289.

Gebrie S A. 2016. Biotrophic fungi infection and plant defense mechanism. Journal of Plant Pathology & Microbiology, 7, 1000378.

Göhre V. 2015. Immune responses: Photosynthetic defence. Nature Plants, 1, 15079.

Gunnaiah R, Kushalappa A C. 2014. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiology and Biochemistry, 83, 40–50.

Gupta A, Bhardwaj M, Tran L S P. 2020. Jasmonic acid at the crossroads of plant immunity and Pseudomonas syringae virulence. International Journal of Molecular Sciences, 21, 7482.

Hahlbrock K, Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 347–369.

Hallgren J, Tsirigos K D, Pedersen M D, Almagro Armenteros J J, Marcatili P, Nielsen H, Krogh A, Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv, doi: 10.1101/2022.04.08.487609.

Han G Z. 2019. Origin and evolution of the plant immune system. New Phytologist, 222, 70–83.

Han X, Kahmann R. 2019. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Frontiers in Plant Science, 10, 822.

Huot B, Yao J, Montgomery B L, He S Y. 2014. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7, 1267–1287.

IWGSC (The International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.

Jia L J, Tang H Y, Wang W Q, Yuan T L, Wei W Q, Pang B, Gong X M, Wang S F, Li Y J, Zhang D. 2019. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nature Communications, 10, 922.

Jiang C, Hei R, Yang Y, Zhang S, Wang Q, Wang W, Zhang Q, Yan M, Zhu G, Huang P. 2020. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nature Communications, 11, 4382.

Johns L E, Bebber D P, Gurr S J, Brown N A. 2022. Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nature Food, 3, 1014–1019.

Jones J D G, Dangl J L. 2006. The plant immune system. Nature, 444, 323–329.

Jones P, Binns D, Chang H Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G. 2014. InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30, 1236–1240.

Kachroo P, Burch-Smith T M, Grant M. 2021. An emerging role for chloroplasts in disease and defense. Annual Review of Phytopathology, 59, 423–445.

Kang Z, Buchenauer H. 2000. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiological and Molecular Plant Pathology, 57, 255–268.

Kangasjarvi S, Neukermans J, Li S, Aro E M, Noctor G. 2012. Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany, 63, 1619–1636.

Kikot G E, Hours R A, Alconada T M. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology, 49, 231–241.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907–915.

Kim S J, Kim M R, Bedgar D L, Moinuddin S G A, Cardenas C L, Davin L B, Kang C, Lewis N G. 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 1455–1460.

Lee M H, Jeon H S, Kim S H, Chung J H, Roppolo D, Lee H J, Cho H J, Tobimatsu Y, Ralph J, Park O K. 2019. Lignin‐based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal, 38, e101948.

Li G, Yen Y. 2008. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48, 1888–1896.

Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, et al. 2019. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 51, 1106–1112.

Liao Y, Smyth G K, Shi W. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Littlejohn G R, Breen S, Smirnoff N, Grant M. 2020. Chloroplast immunity illuminated. New Phytologist, 229, 3088–3107.

Liu M, Zhang S, Hu J, Sun W, Padilla J, He Y, Li Y, Yin Z, Liu X, Wang W. 2019. Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proceedings of the National Academy of Sciences of the United States of America, 116, 17572–17577.

Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Xu J R, Liu H. 2022. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. New Phytologist, 235, 674–689.

Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 133, 1541–1568.

Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. 2022. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Frontiers in Plant Science, 13, 951095.

McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.

Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, Ding X, Zhang D, Fu X, Kim C, Lozano-Duran R. 2020. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell, 182, 1109–1124.

Mesterhazy A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 114, 377–386.

Monaghan J, Zipfel C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15, 349–357.

Ngou B P M, Ding P, Jones J D G. 2022. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34, 1447–1478.

Osborne L E, Stein J M. 2007. Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119, 103–108.

Padmanabhan M S, Dinesh-Kumar S. 2010. All hands on deck - the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular Plant–Microbe Interactions, 23, 1368–1380.

Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. 2018. Transcriptome dynamics associated with resistance and susceptibility against Fusarium head blight in four wheat genotypes. BMC Genomics, 19, 642.

Paranidharan V, Abu-Nada Y, Hamzehzarghani H, Kushalappa A C, Mamer O, Dion Y, Rioux S, Comeau A, Choiniere L. 2008. Resistance-related metabolites in wheat against Fusarium graminearum and the virulence factor deoxynivalenol (DON). Botany, 86, 1168–1179.

Patkar R N, Naqvi N I. 2017. Fungal manipulation of hormone-regulated plant defense. Plos Pathogens, 13, e1006334.

Qi P F, Balcerzak M, Rocheleau H, Leung W, Wei Y M, Zheng Y L, Ouellet T. 2016. Jasmonic acid and abscisic acid play important roles in host–pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight. Physiological and Molecular Plant Pathology, 93, 39–48.

Qiu H, Zhao X, Fang W, Wu H, Abubakar Y S, Lu G D, Wang Z, Zheng W. 2019. Spatiotemporal nature of Fusarium graminearum–wheat coleoptile interactions. Phytopathology Research, 1, 1–12.

Richard B, Qi A, Fitt B D L. 2021. Control of crop diseases through integrated crop management to deliver climate‐smart farming systems for low‐ and high‐input crop production. Plant Pathology, 71, 187–206.

Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, Minami E, Takano M, Yamane H, Iino M. 2013. Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. The Plant Journal, 74, 226–238.

Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.

Rocha R O, Elowsky C, Pham N T, Wilson R A. 2020. Spermine-mediated tight sealing of the Magnaporthe oryzae appressorial pore–rice leaf surface interface. Nature Microbiology, 5, 1472–1480.

Salgado J D, Madden L V, Paul P A. 2015. Quantifying the effects of Fusarium head blight on grain yield and test weight in soft red winter wheat. Phytopathology, 105, 295–306.

Sattler S E, Funnell-Harris D L. 2013. Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Frontiers in Plant Science, 4, 70.

Shi N, Li J, Wu H, Sun D, Feng Y, Wang H, Liu X, Zhang L. 2019. Genetic relationship of Xinong 979 and Thinopyrum ponticum based on pedigree analysis and molecular markers. Crops, 35, 15–21. (in Chinese)

Sieber C M, Lee W, Wong P, Munsterkotter M, Mewes H W, Schmeitzl C, Varga E, Berthiller F, Adam G, Guldener U. 2014. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS ONE, 9, e110311.

Singh A, Dilkes B, Sela H, Tzin V. 2021. The effectiveness of physical and chemical defense responses of wild emmer wheat against aphids depends on leaf position and genotype. Frontiers in Plant Science, 12, 667820.

Sperschneider J, Dodds P N. 2022. EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant–Microbe Interactions, 35, 146–156.

Steiner B, Kurz H, Lemmens M, Buerstmayr H. 2009. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theoretical and Applied Genetics, 118, 753–764.

Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S. 2018. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 16, e2004122.

Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St. Amand P, Yu J, Zhang Z, Bai G. 2019. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 51, 1099–1105.

Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6, e21800.

Tang G, Xia H, Liang J, Ma Z, Liu W. 2021. Spermidine is critical for growth, development, environmental adaptation and virulence in Fusarium graminearum. Frontiers in Microbiology, 12, 3484.

Teufel F, Almagro Armenteros J J, Johansen A R, Gislason M H, Pihl S I, Tsirigos K D, Winther O, Brunak S, von Heijne G, Nielsen H. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40, 1023–1025.

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee S Y, Stitt M. 2004. MapMan: A user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37, 914–939.

Thomma B P H J, Nürnberger T, Joosten M H A J. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23, 4–15.

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. 2017. AgriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45, W122-W129.

Trail F. 2009. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 149, 103–110.

de Torres Zabala M, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, Tillich M, Licht D, Bölter B, Delfino L. 2015. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 1, 15074.

Walter S, Nicholson P, Doohan F M. 2010. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 185, 54–66.

Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. 2021. Cell wall associated immunity in plants. Stress Biology, 1, 3.

Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368, aba5435.

Wang L, Li Q, Liu Z, Surendra A, Pan Y, Li Y, Zaharia L I, Ouellet T, Fobert P R. 2018. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against Fusarium head blight. PLoS ONE, 13, e0207036.

Wang Q, Jiang C, Wang C, Chen C, Xu J R, Liu H. 2017. Characterization of the two-speed subgenomes of Fusarium graminearum reveals the fast-speed subgenome specialized for adaption and infection. Frontiers in Plant Science, 8, 140.

Wang Q, Sun M, Zhang Y, Song Z, Zhang S, Zhang Q, Xu J R, Liu H. 2020. Extensive chromosomal rearrangements and rapid evolution of novel effector superfamilies contribute to host adaptation and speciation in the basal ascomycetous fungi. Molecular Plant Pathology, 21, 330–348.

de Wit P J G M. 2007. How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences, 64, 2726–2732.

Wu F, Zhou Y, Shen Y, Sun Z, Li L, Li T. 2022. Linking multi-omics to wheat resistance types to Fusarium head blight to reveal the underlying mechanisms. International Journal of Molecular Sciences, 23, 2280.

Xia R, Schaafsma A W, Wu F, Hooker D C. 2020. Impact of the improvements in Fusarium head blight and agronomic management on economics of winter wheat. World Mycotoxin Journal, 13, 423–439.

Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q. 2013. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 14, 197.

Xu M, Wang Q, Wang G, Zhang X, Liu H, Jiang C. 2022. Combatting Fusarium head blight: Advances in molecular interactions between Fusarium graminearum and wheat. Phytopathology Research, 4, 37.

Xu Q, Tang C, Wang X, Sun S, Zhao J, Kang Z, Wang X. 2019. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 10, 5571.

Yang F, Jacobsen S, Jørgensen H J, Collinge D B, Svensson B, Finnie C. 2013. Fusarium graminearum and its interactions with cereal heads: Studies in the proteomics era. Frontiers in Plant Science, 4, 37.

Yang F, Xiao K, Pan H, Liu J. 2021. Chloroplast: The emerging battlefield in plant–microbe interactions. Frontiers in Plant Science, 12, 637853.

Yang H, Luo P. 2021. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. International Journal of Molecular Sciences, 22, 8865.

Yuan M, Ngou B P M, Ding P, Xin X F. 2021. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030.

Zhang H, van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J. 2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE, 7, e31722.

Zhang J, Zhou J M. 2010. Plant immunity triggered by microbial molecular signatures. Molecular Plant, 3, 783–793.

Zhang X W, Jia L J, Zhang Y, Jiang G, Li X, Zhang D, Tang W H. 2012. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. The Plant Cell, 24, 5159–5176.

Zheng J, Ge Q, Yan Y, Zhang X, Huang L, Yin Y. 2023. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Research, 51, W115–W121.

Zhou J M, Zhang Y. 2020. Plant immunity: Danger perception and signaling. Cell, 181, 978–989.

Zhu G, Gao C, Wu C, Li M, Xu J R, Liu H, Wang Q. 2021. Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens. BMC Plant Biology, 21, 304.

[1] WANG Kang-kang, JIN Meng-jiao, LI Jing-jing, REN Ye-song, LI Zai-yuan, REN Xing-hai, HUANG Cong, WAN Fang-hao, QIAN Wan-qiang, LIU Bo.

The evolution and diurnal expression patterns of photosynthetic pathway genes of the invasive alien weed, Mikania micrantha [J]. >Journal of Integrative Agriculture, 2024, 23(02): 590-604.

No Suggested Reading articles found!