Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1276-1285    DOI: 10.1016/j.jia.2025.08.004
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Microbial and aroma characteristics of spontaneously fermented wine from organic grapes at the eastern foot of the Helan Mountain

Yueqi Li1, Bohan Rao1, Yingzi Jin2, Zhicheng Zhang2, Wen Ma3, Xuewei Shi4, Yongsheng Tao1, 5#

1 College of Enology, Northwest A&F University, Yangling 712100, China

2 Xiban Winery, Qingtongxia 751608, China

3 College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China

4 Food College, Shihezi University, Shihezi 832000, China

5 Shaanxi Engineering Research Center for Viti-viniculture, Yangling 712100, China

 Highlights 
Organic managernent paractices enhance microbial diversity in grape must and wine.
Organic management vineyard (OMV) fermentation leads to lower Saccharomyces dominance and higher yeast diversity.
OMV spontaneous fermentation increases fermentative and varietal volatiles of wine.
OMV wine boosted floral and sweet fruity aroma with nail polish and vegetal odors.
OMV better suited spontaneous fermentation, producing complex-flavored wines.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
【目的】随着消费者对健康食品和可持续农业的关注日益增加,有机管理方式和自然发酵已成为葡萄酒研究的重点。研究贺兰山东麓产区两种不同管理模式下葡萄自然发酵酒的微生物多样性及产香特征,为自然发酵葡萄酒在葡萄园管理策略上的选择提供了发酵数据支撑和重要的参考依据。【方法】本研究以宁夏贺兰山东麓产区内有机管理葡萄园(organic management vineyard, OMV)赤霞珠葡萄为试材,设常规管理葡萄园(conventional management vineyard, CMV)的原料为对照,进行自然发酵,利用高通量测序法分析了发酵过程中微生物多样性及群落组成,高效液相色谱法分析了酿酒学特性,气相色谱-质谱联用法分析了挥发性化合物,感官品评法分析了香气特征,并通过网络分析建立微生物与挥发性化合物及香气特征的关联。【结果】OMV和CMV中葡萄醪的微生物种类和α多样性不同。OMV的特有真菌种类比CMV多23%,特有细菌种类比CMV多341%。OMV的ACE指数(表征丰富度)均高于CMV,但Shannon指数(表征均匀度)低于CMV,并且OMV的α多样性指数在发酵结束时均高于CMV。微生物群落演替在OMV和CMV中具有差异,对于真菌而言,OMV中Saccharomyces的相对丰度(37.97%)在发酵结束时低于CMV(82.70%),从而提高了其他酵母菌种在发酵过程中的占比。对于细菌而言,OMV发酵过程中群落演替保持稳定,Pantoea始终占据主导地位(94.3%)。OMV酒样的甘油含量显著高于CMV,总酸、酒石酸和柠檬酸含量显著低于CMV,其余无显著差异。OMV酒样的发酵香气总量(+16%)和品种香气总量(+72%)均显著高于CMV,包括乙酸乙酯(+83.5%)、乙酸高级醇酯类(+257.2%)、苯乙基类(+40.5%)、C6醇(+60.0%)和萜烯类化合物(+162.7%)的总量。感官分析表明,OMV酒样的花香和甜果香气强度高于CMV,同时具有明显的指甲油和植物气味特征。网络分析结果显示,SaccharomycesHanseniasporaMetschnikowiaPantoea与特定的挥发性化合物和香气特征有很强的相关性。【结论】有机管理显著提高了微生物的物种丰富度、α多样性以及香气化合物的种类和浓度,有利于酿造具有复杂香气特征的自然葡萄酒。


Abstract  

Organic management practices and spontaneous fermentations have become focal points in wine research due to increasing consumer interest in healthy foods and sustainable agriculture.  In this study, ‘Cabernet Sauvignon’ grapes sourced from organic and conventional management vineyard (OMV/CMV) in the Ningxia region were subjected to spontaneous fermentation.  The microbial, oenological, and aroma profiles of grape must and resulting wines were assessed using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), gas chromatography with mass spectrometry (GC-MS), and sensory evaluations.  Network analysis was applied to explore relationships among microorganisms, volatile compounds, and aroma attributes.  Results showed that organic management significantly increased microbial species richness, α-diversity, and the variety and concentration of aroma compounds, favoring the production of natural wines with complex aroma profiles.  Relative abundance of Saccharomyces in OMV reduced, promoting the prevalence of other yeast species during fermentation.  Bacterial succession in wines from OMV remained stable, with Pantoea as the dominant genus.  Among oenological parameters, OMV wines significantly induced glycerol content, while reduced total acidity, tartaric acid, and citric acid content.  These wines exhibited significantly higher levels of fermentative (+16%) and varietal (+72%) volatiles, as well as enhanced floral and sweet fruity aromas, along with distinct nail polish and vegetal notes.  Additionally, Saccharomyces, Hanseniaspora, Metschnikowia, and Pantoea were strongly correlated with specific volatile compounds and aroma characteristics.  This study provides valuable data that can inform spontaneous fermentation practices and guide vineyard management for natural wine production.


Keywords:  spontaneous fermentation       vineyard management       wine aroma       microbial community       Saccharomyces cerevisiae       volatile compounds  
Received: 26 March 2025   Accepted: 14 July 2025 Online: 05 August 2025  
Fund: 

This work was supported by the Key Research and Development Program of Ningxia Hui Autonomous Region, China (2023BCF01029), the Shaanxi Provincial Science and Technology Project for Innovation Team, China (2023-CX-TD-59) and the Innovative Team Special Project of Northwest A&F University, China (XYTD2023-12).

About author:  Yueqi Li, E-mail: liyueqi@nwafu.edu.cn; #Correspondence Yongsheng Tao, E-mail: taoyongsheng@nwsuaf.edu.cn

Cite this article: 

Yueqi Li, Bohan Rao, Yingzi Jin, Zhicheng Zhang, Wen Ma, Xuewei Shi, Yongsheng Tao. 2026. Microbial and aroma characteristics of spontaneously fermented wine from organic grapes at the eastern foot of the Helan Mountain. Journal of Integrative Agriculture, 25(3): 1276-1285.

Bagheri B, Bauer F F, Setati M E. 2015. The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentation. South African Journal of Enology and Viticulture36, 243–251.

Brock C, Geier U, Greiner R, Olbrich-Majer M, Fritz J. 2019. Research in biodynamic food and farming: A review. Open Agriculture4, 743–757.

Bunbury-Blanchette A L, Fan L, Kernaghan G. 2024. Yeast communities of a North American hybrid wine grape differ between organic and conventional vineyards. Journal of Applied Microbiology135, lxae092.

Capozzi V, Garofalo C, Chiriatti M A, Grieco F, Spano G. 2015. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiological Research181, 75–83.

Doring J, Collins C, Frisch M, Kauer R. 2019. Organic and biodynamic viticulture affect biodiversity and properties of vine and wine: A systematic quantitative review. American Journal of Enology and Viticulture70, 221–242.

Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461.

Escribano-Viana R, López-Alfaro I, López R, Santamaría P, Gutiérrez A R, González-arenzana L. 2018. Impact of chemical and biological fungicides applied to grapevine on grape biofilm, must, and wine microbial diversity. Frontiers in Microbiology9, 59.

Grangeteau C, RoullierGall C, Rousseaux S, Gougeon R D, SchmittKopplin P, Alexeandre H, GuillouxBenatier M. 2017. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microbial Biotechnology10, 354–370.

Guth H. 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry45, 3027–3032.

Hong Y A, Park H D. 2013. Role of non-Saccharomyces yeasts in Korean wines produced from Campbell Early grapes: Potential use of Hanseniaspora uvarum as a starter culture. Food Microbiology34, 207–214.

Hu K, Jin G J, Xu Y H, Tao Y S. 2018. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiaeFood Research International108, 119–127.

Johnson J, Fu M, Qian M, Curtin C, Osborne J P. 2020. Influence of select non-Saccharomyces yeast on Hanseniaspora uvarum growth during prefermentation cold maceration. American Journal of Enology and Viticulture71, 278–287.

Kong C L, Ma N, Yin J, Zhao H Y, Tao Y S. 2021. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Food Chemistry346, 128897.

Laureati M, Gaeta D, Pagliarini E. 2014. Qualitative and sensory evaluation of Sangiovese red wine obtained from organically and conventionally grown grapes. Italian Journal of Food Science26, 355–362.

Li S, Rao C, Zang X, Yang Y, Yang W, Huang X, Li J, Sun J, Liu Y, Ye D. 2025. Characterization of aroma active compounds and microbial communities in spontaneously fermented Vitis quinquangularis wines. Food Research International214, 116676.

Li Y Q, Xu L B, Sam F E, Li A H, Hu K, Tao Y S. 2024. Improving aromatic higher alcohol acetates in wines by cofermentation of Pichia kluyveri and Saccharomyces cerevisiae: Growth interaction and amino acid competition. Journal of the Science of Food and Agriculture104, 6875–6883.

Liu D, Zhang P, Chen D, Howell K. 2019. From the vineyard to the winery: How microbial ecology drives regional distinctiveness of wine. Frontiers in Microbiology10, 2679.

Liu Y, Rousseaux S, Tourdot-Maréchal R, Sadoudi M, Gougeon R, Schmitt-Kopplin P, Alexandre H. 2017. Wine microbiome: A dynamic world of microbial interactions. Critical Reviews in Food Science and Nutrition57, 856–873.

Lu Y, Sun F, Wang W, Liu Y, Wang J, Sun J, Gao Z. 2020. Effects of spontaneous fermentation on the microorganisms diversity and volatile compounds during ‘Marselan’ from grape to wine. LWT-Food Science and Technology134, 110193.

Ma D C, Yan X, Wang Q Q, Zhang Y N, Tao Y S. 2017. Performance of selected Pfermentans and its excellular enzyme in co-inoculation with Scerevisiae for wine aroma enhancement. LWT-Food Science and Technology86, 361–370.

Maioli F, Picchi M, Millarini V, Domizio P, Scozzafava G, Zanoni B, Canuti V. 2021. A methodological approach to assess the effect of organic, biodynamic, and conventional production processes on the intrinsic and perceived quality of a typical wine: The case study of chianti DOCG. Foods10, 1894.

Mas A, Portillo M C. 2022. Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: A mini-review. International Journal of Food Microbiology367, 109592.

Morata A, Loira I, Escott C, Del Fresno J M, Bañuelos M A, Suárez-lepe J A. 2019. Applications of Metschnikowia pulcherrima in wine biotechnology. Fermentation5, 63.

Parpinello G P, Ricci A, Domenico Rombolà A, Nigro G, Versari A. 2019. Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chemistry283, 499–507.

Parpinello G P, Rombolà A D, Simoni M, Versari A. 2015. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chemistry167, 145–152.

Patrignani F, Montanari C, Serrazanetti D I, Braschi G, Vernocchi P, Tabanelli G, Parpinello G P, Versari A, Gardini F, Lanciotti R. 2017. Characterisation of yeast microbiota, chemical and sensory properties of organic and biodynamic Sangiovese red wines. Annals of Microbiology67, 99–109.

Peng C T, Wen Y, Tao Y S, Lan Y Y. 2013. Modulating the formation of Meili wine aroma by prefermentative freezing process. Journal of Agriculture and Food Chemistry61, 1542–1553.

Perpetuini G, Rossetti A P, Battistelli N, Zulli C, Cichelli A, Arfelli G, Tofalo R. 2022. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Research International158, 111577.

Pinto C, Pinho D, Cardoso R, Custodio V, Fernandes J, Sousa S, Gomes A C. 2015. Wine fermentation microbiome: A landscape from different Portuguese wine appellations. Frontiers in Microbiology6, 905.

Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes A C. 2014. Unravelling the diversity of grapevine microbiome. PLoS ONE9, e85622.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner F O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

Romano P, Braschi G, Siesto G, Patrignani F, Lanciotti R. 2022. Role of yeasts on the sensory component of wines. Foods11, 1921.

Ruiz J, Kiene F, Belda I, Fracassetti D, Marquina D, Navascués E, Calderón F, Benito A, Rauhut D, Santos A, Benito S. 2019. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the favor of wine. Applied Microbiology and Biotechnology103, 7425–7450.

Schmid F, Moser G, Müller H, Berg G. 2011. Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology77, 2188–2191.

Swiegers J H, Bartowsky E J, Henschke P A, Pretorius I S. 2005. Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research11, 139–173.

Tao Y S, Liu Y Q, Li H. 2009. Sensory characters of Cabernet sauvignon dry red wine from Changli county (China). Food Chemistry114, 565–569.

Verginer M, Leitner E, Berg G. 2010. Production of volatile metabolites by grape-associated microorganisms. Journal of Agricultural and Food Chemistry58, 8344–8350.

Viana F, Gil J V, Genovés S, Vallés S, Manzanares P. 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology25, 778–785.

Vrublevskaya M, Nguyenová T T M, Drábová L, Lovecká P, Vrchotová B, Matátková O, Kulišová M, Kolouchová I J. 2023. Biodiversity of Vitis vinifera endophytes in conventional and biodynamic vineyard. Czech Journal of Food Sciences41, 44–53.

Waterhouse A L, Sacks G L, Jeffery D W. 2016. Understanding Wine Chemistry.1st ed. John Wiley & Sons, Chichester, United Kingdom.

Wei R T, Ding Y T, Chen N, Wang L, Gao F F, Zhang L, Song R, Liu Y H, Li H, Wang H 2022. Diversity and dynamics of microbial communities during spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) from different regions of China and their relationship with the volatile components in the wine. Food Research International156, 111372.

Xu W, Liu B, Wang C, Kong X. 2020. Organic cultivation of grape affects yeast succession and wine sensory quality during spontaneous fermentation. LWT-Food Science and Technology120, 108894.

Zhang Z, Zhang Q, Yang H, Sun L, Xia H, Sun W, Wang Z, Zhang J. 2022. Bacterial communities related to aroma formation during spontaneous fermentation of “Cabernet sauvignon” wine in Ningxia, China. Foods11, 2775.

[1] Yuhuai Liu, Heng Wang, Li Wang, Jina Ding, Hui Zhai, Qiujin Ma, Can Hu, Tida Ge. Microplastics reduce the wheat (Triticum aestivum L.) net photosynthetic rate through rhizospheric effects[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1263-1275.
[2] Jun Wang, Xun Duan, Yijun Xu, Kaiwen Deng, Wei Gao, Miaomiao Zhang, Yajun Hu, Shoulong Liu, Zhenhua Zhang, Wenju Zhang, Jinshui Wu, Xiangbi Chen. Granulated straw incorporation efficiently promotes soil organic carbon pool in subtropical infertile croplands primarily via plant residues accumulation[J]. >Journal of Integrative Agriculture, 2026, 25(2): 501-512.
[3] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[4] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[5] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[6] Xiangxia Yang, Tingting Chen, Libo Xiang, Limin Liu, Mi Wei. Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(2): 769-785.
[7] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[8] Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu. The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3592-3609.
[9] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[10] XIE Jiao, CAO Qi, WANG Wen-jun, ZHANG Hong-yan, DENG Bing. Understanding changes in volatile compounds and fatty acids of Jincheng orange peel oil at different growth stages using GC–MS[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2282-2294.
[11] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[12] LI Wei-hua, CHEN Peng, WANG Yu-zhu, LIU Qi-zhi. Characterization of the microbial community response to replant diseases in peach orchards[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1082-1092.
[13] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[14] WANG Dong, XI Yue, SHI Xiao-yan, GUO Chao-li, ZHONG Yu-jie, SONG Chao, GUAN Yu, HUANG Lu, YANG Qi-feng, LI Feng-min. Effects of residual plastic film on crop yield and soil fertility in a dryland farming system[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3783-3791.
[15] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
No Suggested Reading articles found!