Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1263-1275    DOI: 10.1016/j.jia.2025.06.014
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Microplastics reduce the wheat (Triticum aestivum L.) net photosynthetic rate through rhizospheric effects

Yuhuai Liu1, 2, 3, 4, Heng Wang4, Li Wang2, Jina Ding2, Hui Zhai4, Qiujin Ma3, 4, Can Hu5, Tida Ge1, 2#

1 College of Smart Agriculture, Xinjiang University, Urumqi 830017, China

2 State Key Laboratory for Quality and Safety of Agro-Products, International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China

3 Ecological Postdoctoral Research Station, Xinjiang University, Urumqi 830046, China

4 College of Ecology and Environment, Xinjiang University, Urumqi 830017, China

5 College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China

 Highlights 
Microplastics decrease superoxide dismutase but increase peroxidase activities.
Microplastics decrease bacterial and fungal diversity indices in rhizosphere soil.
Microplastics decrease bacterial network complexity in rhizosphere soil.
Microplastics increase fungal network complexity in rhizosphere soil.
Microplastic-induced changes in antioxidant enzymes reduce the net photosynthetic rate.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

覆膜导致的微塑料积累影响农田作物-土壤系统养分循环。根际(RS)和非根际土(BS)由两种不同的微生物群落组成,其微生物获取养分的能力不同。微塑料能影响根际效应,但是微塑料积累通过根际微生物群落影响作物净光合速率(NPR)的机制还不明晰因此,本研究通过盆栽实验,解析15%的聚乙烯(PE)和聚氯乙烯(PVC)微塑料添加对小麦NPR影响微生物机制。与对照相比,PE5%PVC1%5%)(w/w)处理下超氧化物歧化酶(SOD)活性降低了15.35-36.7%,过氧化物酶(POD)活性升高了32.47-61.93%,导致NPR下降了17.94-23.81%。在 PE1% PVC5%w/w)处理中,非根际土的细菌和真菌的Chao1ShannonSimpson多样性指数低于根际土。由于细菌和真菌群落组成和结构的变化,细菌和真菌网络复杂性分别降低和增加,以促进小麦生长。特尔检验表明,非根际土的细菌和真菌多样性指数与Olsen-P和磷酸酶呈正相关;而根际土的细菌和真菌多样性指数与NO3- β-14-葡萄糖苷酶呈正相关。结构方程模型表明,小麦酶活性和土壤水解活性与NPR成负相关。因此,小麦在PEPVC微塑料胁迫抗氧化防御策略降低其NPR,从而产生POD的协同效应。



Abstract  

Microplastic accumulation after film mulching affects nutrients cycling in the soil–crop system.  Bulk soil (BS) and rhizosphere soil (RS) have two different community compositions which lead to their different microbial nutrient acquisition abilities.  Microplastics influence the rhizosphere effect.  However, the mechanism by which microplastic accumulation affects the net photosynthetic rate (NPR) through rhizospheric microbial communities remains unknown.  This study aimed to identify the mechanisms underlying the effects of polyethylene (PE) and polyvinyl chloride (PVC) microplastics at 0, 1, and 5% (w/w) on the NPR in the wheat–soil ecosystem using a pot experiment.  Superoxide dismutase (SOD) activity was reduced by 15.35–36.7%, and that of peroxidase (POD) was increased by 32.47–61.93%, causing reductions in NPR (17.94–23.81%) in the PE5% and PVC (1 and 5%) (w/w) treatments compared with the control.  The Chao1, Shannon, and Simpson indices of the bacterial and fungal diversities were lower in BS than in RS at PE1% and PVC5% (w/w), respectively.  The bacterial and fungal network complexities were reduced and increased, respectively, owing to alterations in the bacterial and fungal community compositions and structures for wheat growth.  The Mantel test showed that the bacterial and fungal diversity indices in BS had positive correlations with Olsen-P and phosphatase; however, those in RS were positively correlated with NO3 and β-1,4-glucosidase.  The structural equation model indicated that wheat enzymatic and soil hydrolytic activities negatively affected NPR.  Wheat has a profound antioxidant defense strategy for PE and PVC microplastic stress, which produces a synergistic effect of POD by protecting organelles and reducing tissue damage to preserve the NPR.

Keywords:  microplastics       microbial community       hydrolases       bacteria and fungi       wheat  
Received: 24 January 2025   Accepted: 19 May 2025 Online: 09 June 2025  
Fund: 

This research was supported by the National Natural Science Foundation of China (42407458 and 42307420), the Global Challenges Research Fund of the UK Natural Environment Research Council (NE/V005871/1) and the Shandong Province First-class Discipline Construction “811” Project, China.

About author:  #Correspondence Tida Ge, E-mail: getida@nbu.edu.cn

Cite this article: 

Yuhuai Liu, Heng Wang, Li Wang, Jina Ding, Hui Zhai, Qiujin Ma, Can Hu, Tida Ge. 2026. Microplastics reduce the wheat (Triticum aestivum L.) net photosynthetic rate through rhizospheric effects. Journal of Integrative Agriculture, 25(3): 1263-1275.

Abbasi S, Moore F, Keshavarzi B. 2021. PET-microplastics as a vector for polycyclic aromatic hydrocarbons in a simulated plant rhizosphere zone. Environmental Technology and Innovation21, 101370.

Aggarwal S L, Sweeting O J. 1957. Polyethylene: Preparation, structure, and properties. Chemical Reviews57, 665–672.

Ahammed G J, Wang M M, Zhou Y H, Xia X J, Mao W H, Shi K, Yu J Q. 2012. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress. Ecotoxicology and Environmental Safety80, 132–139.

Bilyera N, Kuzyakova I, Guber A, Razavi B S, Kuzyakov Y. 2020. How “hot” are hotspots: Statistically localizing the high-activity areas on soil and rhizosphere images. Rhizosphere16, 100259.

Boots B, Russell C W, Green D S. 2019. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science and Technology53, 11059–11614.

Brodhagen M, Goldberger J R, Hayes D G, Inglis D A, Marsh T L, Miles C. 2017. Policy considerations for limiting unintended residual plastic in agricultural soils. Environmental Science and Policy69, 81–84.

Cai Y, Xu Y, Liu G, Li B, Guo T, Ouyang D, Li M, Liu S, Tan Y, Wu X, Zhang H. 2024. Polyethylene microplastic modulates lettuce root exudates and induces oxidative damage under prolonged hydroponic exposure. Science of the Total Environment916, 170253.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Pẽa A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–341.

Fan P, Tan W, Yu H. 2022. Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil. Ecotoxicology and Environmental Safety229, 113045.

Ganesh Kumar A K, Anjana K, Hinduja M, Sujitha K, Dharani G. 2020. Review on plastic wastes in marine environment-Biodegradation and biotechnological solutions. Marine Pollution Bulletin150, 110733.

Geng S, Li L, Miao Y, Zhang Y, Yu X, Zhang D, Yang Q, Zhang X, Wang Y. 2024. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops. Journal of Integrative Agriculture23, 2446–2457.

Guo A, Pan C, Su X, Zhou X, Bao Y. 2022. Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. Environmental Pollution302, 119046.

Hu Z, Xiao M, Wu J, Tong Y, Ji J, Huang Q, Ding F, Ding J, Zhu Z, Chen J, Ge T. 2024. Effects of microplastics on photosynthesized C allocation in a rice–soil system and its utilization by soil microbial groups. Journal of Hazardous Materials466, 133540.

Iqbal B, Zhao T, Yin W, Zhao X, Xie Q, Khan K Y, Zhao X, Nazar M, Li G, Du D. 2023. Impacts of soil microplastics on crops: A review. Applied Soil Ecology181, 104680.

Jebara S, Jebara M, Limam F, Aouani M E. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology162, 929–936.

Jeyavani J, Sibiya A, Gopi N, Mahboob S, Al-Ghanim K A, Al-Misned F, Ahmed Z, Riaz M N, Palaniappan B, Govindarajan M, Vaseeharan B. 2023. Ingestion and impacts of water-borne polypropylene microplastics on daphnia similis. Environmental Science and Pollution Research30, 13483–13494.

Khan, K Y, Ali B, Zhang S, Stoffella P J, Yuan S, Xia Q, Qu H, Shi Y, Cui X, Guo Y. 2021. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. Science of the Total Environment778, 146333.

Li C, Cui Q, Li Y, Zhang K, Lu X, Zhang Y. 2022. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. Journal of Hazardous Materials429, 128353.

Li G, Tang Y, Khan K Y, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella P J, Kim G J, Du D. 2023. The toxicological effect on pak choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. Ecotoxicology and Environmental Safety268, 115707.

Li J, Yu Y, Chen X, Yu S, Cui M, Wang S, Song F. 2023. Effects of biochar on the phytotoxicity of polyvinyl chloride microplastics. Plant Physiology and Biochemistry195, 228–237.

Li L, Song K, Yeerken S, Geng S, Liu D, Dai Z, Xie F, Zhou X, Wang Q. 2020. Effect evaluation of microplastics on activated sludge nitrification and denitrification. Science of the Total Environment707, 135953.

Liu S, Huang K, Yuan G, Yang C. 2022. Effects of polyethylene microplastics and phenanthrene on soil properties, enzyme activities and bacterial communities. Processes10, 102128.

Liu S L, Jian M F, Zou L, Hu Q W. 2022. Microbial community structure on microplastic surface in the grus leucogeranus reserve of Poyang Lake. Huanjing Kexue/Environmental Science43, 1447–1454. (in Chinese)

Liu Y, Shahbaz M, Fang Y, Li B, Wei X, Zhu Z, Mar Lynn T, Lu S, Shibistova O, Wu J, Guggenberger G, Ge T. 2021. Stoichiometric theory shapes enzyme kinetics in paddy bulk soil but not in rhizosphere soil. Land Degradation and Development33, 246–256.

Liu Y, Shahbaz M, Ge T, Zhu Z, Liu S, Chen L, Wu X, Deng Y, Lu S, Wu J. 2020. Effects of root exudate stoichiometry on CO2 emission from paddy soil. European Journal of Soil Biology101, 103247.

Liu Y, Xiao M, Shahbaz M, Hu Z, Zhu Z, Lu S, Yu Y, Yao H, Chen J, Ge T. 2022. Microplastics in soil can increase nutrient uptake by wheat. Journal of Hazardous Materials438, 129547.

Liu Y, Zhong Y, Hu C, Xiao M, Ding F, Yu Y, Yao H, Zhu Z, Chen J, Ge T, Ding J. 2023. Distribution of microplastics in soil aggregates after film mulching. Soil Ecology Letters5, 2662–2289.

Liu Z, Wen J, Liu Z, Wei H, Zhang J. 2024. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. Environment International183, 108360.

Lozano Y M, Aguilar-Trigueros C A, Onandia G, Maaß S, Zhao T, Rillig M C. 2021. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology58, 988–996.

Ma X, Shan J, Chai Y, Wei Z, Li C, Jin K, Zhou H, Yan X, Ji R. 2024. Microplastics enhance nitrogen loss from a black paddy soil by shifting nitrate reduction from DNRA to denitrification and anammox. Science of the Total Environment906, 167869.

Ng E L, Huerta Lwanga E, Eldridge S M, Johnston P, Hu H W, Geissen V, Chen D. 2018. An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment627, 1377–1388.

Olsen S R, Cole C V, Watandbe F, Dean L. 1954. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture, Circular 939.

Ren X, Tang J, Wang L, Liu, Q. 2021. Microplastics in soil–plant system: Effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil462, 561–576.

Sahasa R G K, Dhevagi P, Poornima R, Ramya A, Moorthy P S, Alagirisamy B, Karthikeyan S. 2023. Effect of polyethylene microplastics on seed germination of Blackgram (Vigna mungo L.) and Tomato (Solanum lycopersicum L.). Environmental Advances11, 100349.

Shi J, Wang J, Lv J, Wang Z, Peng Y, Shang J, Wang X. 2022. Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Science of the Total Environment838, 156471.

Shi L, Chen, Z, Hou Y, Li J, Shen Z, Chen Y. 2023. The original polyethylene microplastics inhibit the growth of sweet potatoes and increase the safety risk of cadmium. Frontiers in Plant Science14, 1138281.

Shi R, Liu W, Lian Y, Zeb A, Wang Q. 2023. Type-dependent effects of microplastics on tomato (Lycopersicon esculentum L.): Focus on root exudates and metabolic reprogramming. Science of the Total Environment859, 160025.

Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press, San Diego.

Song B, Shang S, Cai F M, Liu Z, Fang J, Li N, Adams J M, Razavi B S. 2023. Microbial resistance in rhizosphere hotspots under biodegradable and conventional microplastic amendment: Community and functional sensitivity. Soil Biology and Biochemistry180, 108989.

Song Q, Zhang J, Zhang F, Shen Y, Yue S, Li S. 2024. Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China. Journal of Integrative Agriculture23, 1671–1684

de Souza Machado A A, Kloas W, Zarfl C, Hempel S, Rillig M C. 2018. Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology24, 1405–1416.

Sun Y, Duan C, Cao N, Li X, Li X, Chen Y, Huang Y, Wang J. 2022. Effects of microplastics on soil microbiome: The impacts of polymer type, shape, and concentration. Science of the Total Environment806, 150516.

Sun Y, Wu M, Xie S, Zang J, Wang X, Yang Y, Li C, Wang J. 2024. Homogenization of bacterial plastisphere community in soil: A continental-scale microcosm study. ISME Communications4, ycad012.

De Tender C, Devriese L I, Haegeman A, Maes S, Vangeyte J, Cattrijsse A, Dawyndt P, Ruttink T. 2017. Temporal dynamics of bacterial and fungal colonization on plastic debris in the north sea. Environmental Science and Technology51, 7350–7360.

Terefe N S, Yang Y H, Knoerzer K, Buckow R, Versteeg C. 2010. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies11, 52–60.

Tong Y, Ding J, Xiao M, Shahbaz M, Zhu Z, Chen M, Kuzyakov Y, Deng Y, Chen J, Ge T. 2023. Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecology Letters5, 220138.

Wang H, He Y, Zheng Q, Yang Q, Wang J, Zhu J, Zhan X 2024. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. Journal of Hazardous Materials463, 132816.

Wang R, Yang L, Guo M, Lin X, Wang R, Guo S. 2024. Effects of microplastic properties and dissolved organic matter on phosphorus availability in soil and aqueous mediums. Environmental Pollution340, 122784.

Wei X, Razavi B, Hu Y, Xu X, Zhu Z, Liu Y, Kuzyakov Y, Li Y, Wu J, Ge T. 2019. C/P stoichiometry of dying rice root defines the spatial distribution and dynamics of enzyme activities in root-detritusphere. Biology and Fertility of Soils55, 251–263.

Wei X, Zhu Z, Liu Y, Luo Y, Deng Y, Xu X, Liu S, Richter A, Shibistova O, Guggenberger G, Wu J, Ge T. 2020. C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biology and Fertility of Soils56, 1093–1107.

Winkler D E. 1959. Mechanism of polyvinyl chloride degradation and stabilization. Journal of Polymer Science35, 3–6.

Xiao M, Ding J, Luo Y, Zhang H, Yu Y, Yao H, Zhu Z, Chadwick D R, Jones D, Chen J, Ge T. 2022. Microplastics shape microbial communities affecting soil organic matter decomposition in paddy soil. Journal of Hazardous Materials431, 128589.

Yang L, Shen P, Liang H, Wu Q. 2024. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. Ecotoxicology and Environmental Safety271, 115935.

Yin M, Yan B, Wang H, Wu Y, Wang X, Wang J, Zhu Z, Yan X, Liu Y, Liu M, Fu C. 2023. Effects of microplastics on nitrogen and phosphorus cycles and microbial communities in sediments. Environmental Pollution318, 120852.

Yuan Y, Zhao W, Xiao J, Zhang Z, Qiao M, Liu Q, Yin H. 2017. Exudate components exert different influences on microbially mediated C losses in simulated rhizosphere soils of a spruce plantation. Plant and Soil419, 127–140.

Zang H, Zhou J, Marshall M R, Chadwick D R, Wen Y, Jones D L. 2020. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? Soil Biology and Biochemistry148, 107926.

Zhang Q F, Li Y Y. 2005. NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science168, 423–430.

Zhang K, Wang M, Li Y, Zhang X, Xiao K, Ma C, Zhang X, Zhang H, Chen Y. 2024. Wheat (Triticum aestivum L.) seedlings performance mainly affected by soil nitrate nitrogen under the stress of polyvinyl chloride microplastics. Scientific Reports14, 4962.

Zhang S, Gao W, Cai K, Liu T, Wang X. 2022. Effects of microplastics on growth and physiological characteristics of tobacco (Nicotiana tabacum L.). Agronomy12, 2692.

Zhou J, Wen Y, Marshall M R, Zhao J, Gui H, Yang Y, Zeng Z, Jones D L, Zang H. 2021. Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment787, 147444.

[1] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[2] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[3] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[4] Yueqi Li, Bohan Rao, Yingzi Jin, Zhicheng Zhang, Wen Ma, Xuewei Shi, Yongsheng Tao. Microbial and aroma characteristics of spontaneously fermented wine from organic grapes at the eastern foot of the Helan Mountain[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1276-1285.
[5] Jun Wang, Xun Duan, Yijun Xu, Kaiwen Deng, Wei Gao, Miaomiao Zhang, Yajun Hu, Shoulong Liu, Zhenhua Zhang, Wenju Zhang, Jinshui Wu, Xiangbi Chen. Granulated straw incorporation efficiently promotes soil organic carbon pool in subtropical infertile croplands primarily via plant residues accumulation[J]. >Journal of Integrative Agriculture, 2026, 25(2): 501-512.
[6] Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 744-755.
[7] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[10] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[11] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[12] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[13] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[14] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[15] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
No Suggested Reading articles found!