Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 501-512    DOI: 10.1016/j.jia.2025.07.027
Section 2: Green Crop Production in Subtropical Regions Advanced Online Publication | Current Issue | Archive | Adv Search |
Granulated straw incorporation efficiently promotes soil organic carbon pool in subtropical infertile croplands primarily via plant residues accumulation

Jun Wang1, 2, Xun Duan1, 3, 4, Yijun Xu2, Kaiwen Deng1, 3, 4, Wei Gao1, 3, Miaomiao Zhang1, 3, Yajun Hu5, Shoulong Liu1, 3#, Zhenhua Zhang2, Wenju Zhang6, Jinshui Wu1, 3, Xiangbi Chen1, 3, 4#

1 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2 College of Resources, Hunan Agricultural University, Changsha 410128, China

3 Changsha Research Station for Agricultural & Environmental Monitoring, Chinese Academy of Sciences, Changsha 410158, China

4 University of Chinese Academy of Sciences, Beijing 100049, China

5 College of Agronomy, Hunan Agricultural University, Changsha 410125, China

6 National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 
Massive granulated straw incorporation into infertile croplands effectively enhances soil organic carbon (SOC) pool and crop yield.
As granulated straw incorporation increases, SOC accumulation efficiency varies from 30.8 to 60.0%.
SOC increases under granulated straw incorporation primarily originate from plant residues rather than microbial necromass.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

贫瘠农田土壤有机碳快速提升依赖高强度有机物料投入,但农作物秸秆极为蓬松,田间难以实现大量深还入土。将粉碎秸秆压缩为致密棒状颗粒能够实现秸秆大量均匀深还入土,秸秆颗粒化还田下土壤有机碳积累效率、最有效增量组分尚不清楚。本研究亚热带典型贫瘠旱地和稻田土壤为对象,采用田间微区试验,设置0306090 t ha−1秸秆颗粒投入量梯度,分析一年后土壤中有机碳积累效率及其植物残体碳(生物标识物为木质素酚)和微生物残体碳(生物标识物为氨基糖)积累特征结果表明:随秸秆颗粒投入量增加,旱地土壤有机碳积累效率保持稳定(30.8–37.5%),而稻田呈下降趋势(60.0%降至38.3%。随秸秆颗粒投入量增加,两种土壤中木质素酚对土壤有机碳积累的贡献显著提升,而氨基糖贡献显著变化,且木质素酚与氨基糖比值随秸秆颗粒投入强度增加呈线性增加。这表明秸秆颗粒投入下土壤有机碳的快速提升以植物残体为主,而非微生物残体,主要归因于物理空间隔绝效应限制了土壤微生物对秸秆颗粒内部碳源的摄取和代谢。综合作物产量提升情况,高强度秸秆颗粒化还田亚热带贫瘠农田土壤快速培肥增碳的有效措施



Abstract  

Rapidly improving infertile croplands and enhancing their soil organic carbon (SOC) pool necessitate substantial organic materials incorporation.  Converting loose crop straw into granulated form facilitates uniform incorporation within the plough soil layer.  As an innovative soil amelioration approach, the efficiency and patterns of SOC accumulation remain unclear.  Two field experiments were conducted in infertile subtropical upland and paddy soils with 0, 30, 60, and 90 Mg ha−1 granulated straw incorporation.  After one year, SOC accumulation efficiency from straw input remained stable in upland (30.8–37.5%) with increasing amounts of straw incorporation, while declined from 60.0 to 38.3% in paddy.  In both croplands, the contributions of lignin phenols to SOC increased with increasing straw incorporation, while the contributions from amino sugars remained constant at higher straw input levels.  Subsequently, the ratios of lignin phenols to amino sugars increased with increasing straw incorporation, indicating faster plant residue accumulation compared to microbial necromass, as the granulation approach limited microbial involvement in straw transformation.  Thus, single-time incorporation of substantial granulated straw presents an effective agricultural strategy for rapid amelioration of infertile croplands.


Keywords:  SOC accumulation efficiency       granulated straw        upland and paddy        plant residues        microbial necromass        microbial community  
Received: 04 March 2025   Accepted: 09 June 2025 Online: 29 July 2025  
Fund: 

This work was financially supported by the National Key R&D Program of China (2021YFD1901203, 2021YFD1901204), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0440404), the National Natural Science Foundation of China (42377348), the Science Foundation for Distinguished Young Scholars of Hunan Province, China (2024JJ2052), and the Natural Science Foundation of Guangxi, China (2025GXNSFAA069337).

About author:  #Correspondence Shoulong Liu, Tel: +86-731-84619732, E-mail: along@isa.ac.cn; Xiangbi Chen, E-mail: xbchen@isa.ac.cn

Cite this article: 

Jun Wang, Xun Duan, Yijun Xu, Kaiwen Deng, Wei Gao, Miaomiao Zhang, Yajun Hu, Shoulong Liu, Zhenhua Zhang, Wenju Zhang, Jinshui Wu, Xiangbi Chen. 2026. Granulated straw incorporation efficiently promotes soil organic carbon pool in subtropical infertile croplands primarily via plant residues accumulation. Journal of Integrative Agriculture, 25(2): 501-512.

Bahri H, Dignac M F, Rumpel C, Rasse D P, Chenu C, Mariotti A. 2006. Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biology and Biochemistry38, 1977–1988.

Berhane M, Xu M, Liang Z, Shi J, Wei G, Tian X. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology26, 2686–2701.

Bossio D A, Scow K M. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology35, 265–278.

Canarini A, Kiaer L P, Dijkstra F A. 2017. Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biology and Biochemistry112, 90–99.

Chen X B, Hu Y J, Feng S Z, Rui Y C, Zhang Z H, He H B, He X Y, Ge T D, Wu J S, Su Y R. 2018a. Lignin and cellulose dynamics with straw incorporation in two contrasting cropping soils. Scientific Reports8, 1633.

Chen X B, Hu Y J, Xia Y H, Zheng S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang Z H, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su Y R. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology27, 2478–2490.

Chen X B, Xia Y H, Hu Y J, Gunina A, Ge T D, Zhang Z H, Wu J S, Su Y R. 2018b. Effect of nitrogen fertilization on the fate of rice residue-C in paddy soil depending on depth: 13C amino sugar analysis. Biology and Fertility of Soils54, 523–531.

Chen X B, Xia Y H, Rui Y C, Ning Z, Hu Y J, Tang H, He H B, Li H X, Kuzyakov Y, Ge T D, Wu J S, Su Y R. 2020. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. AgricultureEcosystems & Environment292, 106816.

Cong P, Wang J, Li Y Y, Liu N, Dong J X, Pang H C, Zhang L, Gao Z J. 2020. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil and Tillage Research204, 104735.

Cotrufo M F, Soong J L, Horton A J, Campbell E E, Haddix M L, Wall D H, Parton W J. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience8, 776–779.

Deng S H, Zheng X D, Chen X B, Zheng S M, He X Y, Ge T D, Kuzyakov Y, Wu J S, Su Y R, Hu Y J. 2021. Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi. Biology and Fertility of Soils57, 65–76.

Derrien D, Plain C, Courty P E, Gelhaye L, Moerdijk-Poortvliet T C W, Thomas F, Versini A, Zeller B, Koutika L S, Boschker H T S, Epron D. 2014. Does the addition of labile substrate destabilise old soil organic matter? Soil Biology and Biochemistry76, 149–160.

Dick W A, Tabatabai M A. 1977. An alkaline oxidation method for determination of total phosphorus in soils. Soil Science Society of America Journal41, 511–514.

Duan X, Chen X B, Zhang W J, Wang J, Xie L, Xu Y J, Hu S Y, Zhu G X, Gao W, Wu J. 2025. Carbon accumulation efficiency of granulated straw incorporation and its response to nutrient supplement in infertile agricultural soils: Evidence from biomarkers. Soil Ecology Letters7, 240284.

Duan X, Gunina A, Rui Y C, Xia Y H, Hu Y J, Ma C, Qiao H, Zhang Y M, Wu J S, Su Y R, Chen X B. 2024a. Contrasting processes of microbial anabolism and necromass formation between upland and paddy soils across regional scales. Catena, 239, 107902.

Duan X, Rui Y C, Xia Y H, Hu Y J, Ma C, Qiao H, Zeng G J, Su Y R, Wu J S, Chen X B. 2024b. Higher microbial C use efficiency in paddy than in adjacent upland soils: Evidence from continental scale. Soil and Tillage Research235, 105891.

Engelking B, Flessa H, Joergensen R G. 2007. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biology and Biochemistry39, 2111–2118.

Fan T, Zhang Y L, Wang X D, Zhao Y H, Shi A D, Zhang X. 2023. Application of various high- density organic materials in soil promotes germination and increases nutrient content of wheat. Environmental Technology & Innovation32, 103298.

Fan W, Wu J G. 2020. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. Journal of Microbiology58, 657–667.

Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology2, 113–118.

He Y T, He X H, Xu M G, Zhang W J, Yang X Y, Huang S M. 2018. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat–maize cropping sites across central and south China. Soil and Tillage Research177, 79–87.

Hedges J I, Ertel J R. 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry54, 174–178.

Hawkes C V, Waring B G, Rocca J D, Kivlin S N. 2017. Historical climate controls soil respiration responses to current soil moisture. Proceedings of the National Academy of Sciences of the United States of America114, 6322–6327.

Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. 2017. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews41, 941–962.

Khan K S, Mack R, Castillo X, Kaiser M, Joergensen R G. 2016. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma271, 115–123.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner F O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research41, e1.

Kong A Y Y, Six J, Bryant D C, Denison R F, Kessel C V. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal69, 1078–1085.

Kösters R, Du Preez C C, Amelung W. 2018. Lignin dynamics in secondary pasture soils of the South African Highveld. Geoderma319, 113–121.

Li B Z, Liang F, Wang Y J, Cao W C, Song H, Chen J S, Guo J H. 2023. Magnitude and efficiency of straw return in building up soil organic carbon: A global synthesis integrating the impacts of agricultural managements and environmental conditions. Science of the Total Environment875, 162670.

Li N, Lei W Y, Sheng M, Long J H, Han Z Y. 2022. Straw amendment and soil tillage alter soil organic carbon chemical composition and are associated with microbial community structure. European Journal of Soil Biology110, 103406.

Li N, Yao S H, You M Y, Zhang Y L, Qiao Y F, Zou W X, Han X Z, Zhang B. 2014. Contrasting development of soil microbial community structure under no-tilled perennial and tilled cropping during early pedogenesis of a Mollisol. Soil Biology and Biochemistry77, 221–232.

Li W M, Zhang D H, He W H, Fan M S, Chen H Q. 2024. Effect of optimal nitrogen application and mid-season drainage on rice root activity and reductive substances in straw-incorporated paddy. Soil Use and Management40, e13024.

Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.

Lin H Y, Zhou M H, Zeng F R, Xu P, Ma S L, Zhang B W, Li Z Y, Wang Y Q, Zhu B. 2022. How do soil organic carbon pool, stock and their stability respond to crop residue incorporation in subtropical calcareous agricultural soils? AgricultureEcosystems & Environment332, 107927.

Liu X, Zhou F, Hu G Q, Shao S, He H B, Zhang W, Zhang X D, Li L J. 2019. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma333, 35–42.

Lu F. 2015. How can straw incorporation management impact on soil carbon storage? A meta-analysis. Mitigation and Adaptation Strategies for Global Change20, 1545–1568.

Meisner A, Bååth E, Rousk J. 2013. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biology and Biochemistry66, 188–192.

Moorhead D L, Sinsabaugh R L. 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151–174.

Qiu H S, Ge T D, Liu J Y, Chen X B, Hu Y J, Wu J S, Su Y R, Kuzyakov Y. 2018. Effects of biotic and abiotic factors on soil organic matter mineralization: Experiments and structural modeling analysis. European Journal of Soil Biology84, 27–34.

Sinsabaugh R L, Manzoni S, Moorhead D L, Richter A. 2013. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters16, 930–939.

Six J, Conant R T, Paul E A, Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil241, 155–176.

Stewart C E, Paustian K, Conant R T, Plante A F, Six J. 2007. Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry86, 19–31.

Stewart C E, Paustian K, Conant R T, Plante A F, Six J. 2009. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry41, 357–366.

Tang L, Guo X B, Huang D Y, Wei X M, Sheng H, Luo P, Zhou P, Gao W, Li Y, Zhang M M, Zheng W, Wu J S. 2024. Microbial metabolism strengths carbon sequestration and crop yield in upland red soil after long-term ex situ incorporation of straw. Journal of Soils and Sediments24, 3407–3421.

Tian K, Zhao Y C, Xu X H, Hai N, Huang B, Deng W J. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture Ecosystems & Environment204, 40–50.

Tinsley J, Darbyshire J F. 1984. Biological Processes and Soil Fertility. Springer Netherlands, Dordrecht.

Wang H H, Shen M X, Hui D F, Chen J, Sun G F, Wang X, Lu C Y, Sheng J, Chen L G, Luo Y Q, Zheng J C, Zhang Y F. 2019. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Soil and Tillage Research195, 104377.

Wang H N, Yang G T, Wang X C, Zhao C K, Muhammad, N, Chen Y J, Hu Y G. 2020. Oilseed rape straw returning changes soil reducibility and affects the root and yield of rice in the rape–rice rotation field at Sichuan Basin area of China. Agronomy Journal112, 4681–4692.

Wang L, Wang E L, Chen G Q, Qian X, Liu Q, Gao Y B, Zhang H, Liu K C, Li Z X. 2025. Optimizing straw return to enhance grain production and approach carbon neutrality in the intensive cropping systems. Soil and Tillage Research248, 106447.

Wang P X, Wang X Q, Zong R, Wang X B, Ni H P, Liu L M, Yang Y, Hao Y B, Zhang Y T, Pang H C, Qian C R. 2024. Annual burying of pelletized straw benefits grain amino acid by increasing soil mineral elements: A case study in Northeast China. Field Crops Research314, 109458.

Wang X J, Jia Z K, Liang L Y, Zhao Y F, Yang B P, Ding R X, Wang J P, Nie J F. 2018. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Research218, 11–17.

Wang Y L, Wu P N, Mei F J, Ling Y, Qiao Y B, Liu C S, Leghari S J, Guan X K, Wang T C. 2021. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management288, 112391.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil Biology and Biochemistry, 22, 1167–1169.

Xu C, Wang J D, Wu D, Li C Z, Wang L, Ji C, Zhang Y C, Ai Y C. 2022. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. Journal of Environmental Management303, 114129.

Zhang J, Li Y N. 2023. Analysis of the current situation of medium and low yield fields in China. Frontiers in Sustainable Development3, 21–24.

Zhang L, Wang J, Pang H C, Zhang J T, Guo J J, Dong G H, Cong P. 2018. Effects of pelletized straw on soil nutrient properties in relation to crop yield. Soil Use and Management, 34, 479–489.

Zhang X J, Li D L, Liu Y, Li J J, Hu H W. 2023. Soil organic matter contents modulate the effects of bacterial diversity on the carbon cycling processes. Journal of Soils and Sediments23, 911–922.

Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry28, 1201–1206.

[1] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[2] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[3] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
No Suggested Reading articles found!