Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3451-3464    DOI: 10.1016/j.jia.2025.07.001
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The homeodomain transcription factor VvOCP3 negatively regulates white rot resistance in grape

Zhen Zhang1*, Cui Chen1*, Changyue Jiang1, Hong Lin1, Yuhui Zhao1, Yinshan Guo1, 2#

1 College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2 National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China

 Highlights 

VvOCP3 negatively regulates grape resistance to white rot caused by Coniella diplodiella.

VvOCP3 suppresses resistance by inhibiting VvPR1 expression.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
葡萄白腐病是由白腐菌Coniella diplodiella (Speg.) Sacc.(C. diplodiella)引起的一种真菌性病害,严重影响了葡萄果实的品质和产量;然而,关于植物对C. diplodiella病原菌反应的调节机制仍然知之甚少。在此,我们对葡萄(Vitis vinifera)中的一个Homeodomain(HD)转录因子VvOCP3进行了鉴定,并证明了其在C. diplodiella抗性中的重要作用。基因表达分析表明,接种C. diplodiella病原菌后,VvOCP3的表达水平显著下调。在葡萄果实瞬时注射和愈伤组织中稳定过表达的功能分析表明,VvOCP3负向调控葡萄对C. diplodiella的抗性。进一步的研究表明,VvOCP3直接与VvPR1(病原相关蛋白 1)的启动子结合并抑制其转录,从而降低了对C. diplodiella的抗性。此外,VvOCP3还能与2C型蛋白磷酸酶VvABI1相互作用,后者是ABA信号通路的负调节因子。综上所述,我们的研究结果表明VvOCP3在葡萄抗白腐病中起着至关重要的调节作用,为通过基因工程调节VvOCP3的表达水平来培育具有更强白腐病抗性的葡萄品种提供了理论指导。


Abstract  

Grape white rot is a fungal disease caused by Coniella diplodiella (Speg.) Sacc. that seriously affects fruit quality and yield; however, the underlying mechanism governing the plant response to Cdiplodiella pathogens is still poorly understood.  Here, we characterized a homeodomain (HD) transcription factor from grape (Vitis vinifera), VvOCP3, and demonstrated its significance in Cdiplodiella resistance.  Expression analysis showed that VvOCP3 expression was significantly down-regulated upon inoculation with Cdiplodiella.  Functional analysis with transient injection in grape berries and stable overexpression in grape calli demonstrated that VvOCP3 negatively regulates grape resistance to Cdiplodiella.  Further studies showed that VvOCP3 directly binds to the promoter of VvPR1 (pathogenesis-related protein 1) and inhibits its expression, resulting in reduced resistance to Cdiplodiella.  In addition, VvOCP3 can interact with the type 2C protein phosphatase VvABI1, which is a negative modulator of the ABA signaling pathway.  In summary, our findings suggest that VvOCP3 plays a crucial role in regulating white rot resistance in grape, and offer theoretical guidance for developing grape cultivars with enhanced Cdiplodiella resistance by regulating the expression of VvOCP3.


Keywords:  grape       white rot       VvOCP3       VvPR1       VvABI1  
Received: 07 November 2023   Online: 05 July 2025   Accepted: 17 July 2024
Fund: 

This work was funded by the National Natural Science Foundation of China (31972368), the China Agriculture Research System (CARS-29-yc-6), the Major Agricultural Science Projects of Liaoning Province, China (2023JH1/10200004) and the Science and Technology Program of Shenyang, China (23-410-2-03).

About author:  Zhen Zhang, E-mail: 1986899210@qq.com; Cui Chen, E-mail: Chencui8989293@163.com; #Correspondence Yinshan Guo, Tel: +86-24-88487143, E-mail: guoyinshan77@syau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Zhen Zhang, Cui Chen, Changyue Jiang, Hong Lin, Yuhui Zhao, Yinshan Guo. 2025. The homeodomain transcription factor VvOCP3 negatively regulates white rot resistance in grape. Journal of Integrative Agriculture, 24(9): 3451-3464.

Asselbergh B, de Vleesschauwer D, Hofte M. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions21, 709–719.

Brandt R, Cabedo M, Xie Y, Wenkel S. 2014. Homeodomain leucinezipper proteins and their role in synchronizing growth and development with the environment. Journal of Integrative Plant Biology56, 518–526.

Cao F Y, Yoshioka K, Desveaux D. 2011. The roles of ABA in plant-pathogen interactions. Journal of Plant Research124, 489–499.

Caruso C, Caporale C, Chilosi G, Vacca F, Buonocore V. 1996. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. Journal of Protein Chemistry15, 35–44.

Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. 2014. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS ONE, 9, e87156.

Cheng Y T, Zhang L, He S Y. 2019. Plant-microbe interactions facing environmental challenge. Cell Host & Microbe26, 183–192.

Coego A, Ramirez V, Gil M J, Flors V, Mauch-Mani B, Vera P. 2005. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. The Plant Cell17, 2123–2137.

Cooper B, Clarke J D, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff S A, Glazebrook J. 2003. A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences of the United States of America100, 4945–4950.

Couto D, Niebergall R, Liang X, Bücherl C A, Sklenar J, Macho A P, Ntoukakis V, Derbyshire P, Altenbach D, Maclean D, Robatzek S, Uhrig J, Menke F, Zhou J M, Zipfel C. 2016. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathogens12, e1005811.

Cutler S R, Rodriguez P L, Finkelstein R. R, Abrams S R. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology61, 651–679.

Derelle R, Lopez P, Le Guyader H, Manuel M. 2007. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evolution & Development9, 212–219.

Dodds P N, Rathjen J P. 2010. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Publishing Group11, 539–548.

Fang L J, Qin R L, Liu Z, Liu C R, Gai Y P, Ji X L. 2019. Expression and functional analysis of a PR-1 gene, MuPR1, involved in disease resistance response in mulberry (Morus multicaulis). Journal of Plant Interactions14, 376–385.

Finkelstein R R, Gampala S S L, Rock C D. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell14, 15–45.

Fuchs S, Grill E, Meskiene I, Schweighofer A. 2013. Type 2C protein phosphatases in plants. FEBS Journal280, 681–693.

Fujii H, Chinnesamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. 2009. In vitro reconstitution of an abscisic acid signaling pathway. Nature462, 660–666.

Gamir J, Darwiche R, Hof P V, Choudhary V, Stumpe M, Schneiter R, Mauch F. 2017. The sterol-binding activity of pathogenesis-related protein 1 reveals the mode of action of an antimicrobial protein. The Plant Journal89, 502–509.

Gao W, Long L, Xu L, Lindsey K, Zhang X L, Zhu L F. 2016. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Journal of Integrative Plant Biology58, 503–513.

Garcia-Andrade J, Ramirez V, Flors V, Vera P. 2011. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. The Plant Journal67, 783–794.

Glazebrook J. 2005. Contrasting mechanisms of dense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology43, 205–227.

Grant M R, Jones J D. 2009. Hormone (dis)harmony moulds plant heath and disease. Science324, 750–752.

Hamamouch N, Li C Y, Seo P J, Park C M, Davis E L. 2011. Expression of Arabidopsis pathogenesis-related genes during nematode infection. Molecular Plant Pathology12, 355–364.

Horbach R, Navarro-Quesada A R, Knogge W, Deising H B. 2011. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology168, 51–62.

Jain D, Khurana J P. 2018. Role of pathogenesis-related (PR) proteins in plant defense mechanism. Molecular Aspects of Plant-Pathogen Interaction12, 265–281.

Jia H F, Zuo Q Q, Sadeghnezhad E, Zheng T, Chen X Q, Dong T Y, Fang J G. 2023. HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. The Plant Journal113, 127–144.

Kortekamp A. 2006. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry44, 58–67.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution35, 1547–1549.

Li D, Wan Y Z, Wang Y J, He P C. 2008. Relatedness of resistance to anthracnose and to white rot in 567 Chinese wild grapes. Vitis Journal of Grapevine Research47, 213–215.

Li J J, Luo C, Yang X Z, Peng L H, Lu T T, Yang J H, Zhang X H, Xie Y Q, Yang Z Y, Xu F, He X H. 2023. Genome-wide identification of the mango pathogenesis-related 1 (PR1) gene family and functional analysis of MiPR1A genes in transgenic ArabidopsisScientia Horticulturae321, 112254.

Li P, Tan X B, Liu R T, Rahman F U, Jiang J F, Sun L, Fan X C, Liu J H, Liu C H, Zhang Y. 2023. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L.×Vitis davidii Foex.) crossing. Horticulture Research10, uhad063.

Li X, Hou Y Y, Li M N, Zhang F, Yi F Y, Kang J M, Yang Q C, Long R C. 2022. Overexpression of an ABA-inducible homeodomain-leucine zipper I gene MsHB7 confers salt stress sensitivity to alfalfa. Industrial Crops and Products177, 114463.

Lim C W, Luan S, Lee S C. 2014. A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis. Plant and Cell Physiology55, 1691–1703.

Liu Y R, Yang L L, Luo D Y, Mou Z Y, Liu C H, Ma F W. 2024. The HD-Zip I transcription factor MdHB-7 negatively regulates Valsa canker resistance in apple (Malus domestica). Scientia Horticulturae324, 112623.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods25, 402–408.

Van Loon L C, Van Kammen A. 1970. Polyacrylamide disc electro-phoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology40, 199–211.

Van Loon L C, Rep M, Pieterse C M J. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology44, 135–162.

Lu S W, Faris J D, Sherwood R, Friesen T L, Edwards M C. 2014. A dimeric PR-1-type pathogenesis-related protein interacts with toxa and potentially mediates toxa-induced necrosis in sensitive wheat. Molecular Plant Pathology15, 650–663.

Mayda E, Tornero P, Conejero V, Vera P. 1999. A tomato homeobox gene (HD-Zip) is involved in limiting the spread of programmed cell death. The Plant Jouranl20, 591–600.

Mine A, Berens M L, Nobori T, Anver S, Fukumoto K, Winkelmüller T M, Takeda A, Becker D, Tsuda K. 2017. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proceedings of the National Academy of Sciences of the United States of America114, 7456–7461.

Montillet J L, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M. Garcia A V, Douki T, Bigeard J, Lauriere C, Chevalier A, Castresana C, Hirt H. 2013. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in ArabidopsisPLoS Biology11, e1001513.

Mou S L, Liu Z Q, Gao F, Yang S, Su M X, Shen L, Wu Y, He S L. 2017. CaHDZ27, a homeodomain-leucine zipper I protein, positively regulates the resistance to Ralstonia solanacearum infection in pepper. Molecular Plant-Microbe Interactions30, 960–973.

Mukherjee K, Brocchieri L, Burglin T R. 2009. A comprehensive classification and evolutionary analysis of plant homeobox genes. Molecular Biology and Evolution26, 2775–2794.

Ni Y X, Wang X L, Li D D, Wu Y J, Xu W L, Li X B. 2008. Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochimica et Biophysica Sinica40, 78–84.

Punja Z K. 2001. Genetic engineering of plants to enhance resistance to fungal pathogensa review of progress and future prospects. Canadian Journal of Plant Pathology23, 216–235.

Raghavendra A S, Gonugunta V K, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science, 15, 395–401.

Rahman F U, Khan I A, Aslam A, Liu R T, Sun L, Wu Y D, Aslam M M, Khan A U, Li P, Jiang J F, Fan X C, Liu C H, Zhang Y. 2022. Transcriptome analysis reveals pathogenesis-related gene 1 pathway against salicylic acid treatment in grapevine (Vitis vinifera L). Frontiers in Genetics13, 1033288.

Ramirez V, Coego A, Lopez A, Agorio A, Flors V, Vera P. 2009. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. The Plant Journal, 58, 578–591.

Ramirez V, Van der Ent S, Garcia-Andrade J, Coego A, Pieterse C M, Vera P. 2010. OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in ArabidopsisBMC Plant Biology10, 199.

Ramirez V, Lopez A, Andrade J G, Vera P. 2013. The OCP3 gene links drought tolerance and plant immunity. Droughts: New research. In: Neves D F, Sanz J D, eds., DroughtsNew Research. Nova Publishers, USA. pp. 311–324.

Robert-Seilaniantz A, Navarro L, Bari R, Jones J D. 2007. Pathological hormone imbalances. Current Opinion in Plant Biology10, 372–379.

Sarowar S, Kim Y J, Kim E N, Kim K D, Hwang B K, Islam R, Shin J S. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Reports, 24, 216–224.

Schweighofer A, Hirt H, Meskiene L. 2004. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends in Plant Science9, 236–243.

Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I. 2007. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in ArabidopsisThe Plant Cell19, 2213–2224.

Seo P J, Lee A K, Xiang F N, Park C M. 2008. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49, 334–344.

Staneloni R J, Rodriguez-Batiller M J, Casal J J. 2008. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Molecular Plant1, 75–83.

Su K, Guo Y S, Zhao Y H, Gao H Y, Guo X W. 2019. Candidate genes for grape white rot resistance based on 565 SMRT and Illumina sequencing. BMC Plant Biology19, 501.

Sun Y F, Pri-Tal O, Michaeli D, Mosquna A. 2020. Evolution of abscisic acid signaling module and its perception. Frontiers in Plant Science11, 934.

Wang Y, Wang Y C. 2018. Phytophthora sojae effectors orchestrate warfare with host immunity. Current Opinion in Microbiology46, 7–13.

Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, dit Frey N F, Leung J. 2008. An update on abscisic acid signaling in plants and more. Molecular Plant1, 198–217.

Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A. Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S. 2004. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: Phenotyping and comparative analysis between rice and ArabidopsisPhysiological Genomics17, 87–100.

Zhang J, Coaker G, Zhou J M, Dong X N. 2020. Plant immune mechanisms: From reductionistic to holistic points of view. Molecular Plant13, 1358–1378.

Zhang Q L, Xu C R, Wei H Y, Fan W Q, Li T Z. 2021. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple. Horticulture Research8, 219.

Zhang Z, Jiang C Y, Chen C, Su K, Lin H, Zhao Y H, Guo Y S. 2023. VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway. Horticulture Research10, uhad172.

Zhu J H, Shi H Z, Lee B H, Damsz B, Cheng S, Stirm V, Zhu J K, Hasegawa P M, Bressan R A. 2004. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF independent pathway. Proceedings of the National Academy of Sciences of the United States of America101, 9873–9878.

[1] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[2] Lifang Yuan, Hang Jiang, Qibao Liu, Xilong Jiang, Yanfeng Wei, Xiangtian Yin, Tinggang Li. Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2686-2703.
[3] Hainan Liu, Maosong Pei, Charles Ampomah-Dwamena, Yaxin Shang, Yihe Yu, Tonglu Wei, Qiaofang Shi, Dalong Guo.

Alternative splicing of the PECTINESTERASE gene encoding a cell wall-degrading enzyme affects postharvest softening in grape [J]. >Journal of Integrative Agriculture, 2024, 23(3): 863-875.

[4] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
[5] WANG Fu-qiang, BIAN Lu, QIU Peng-peng, GUO Shuo, GUO Jing-han, GUO Chen-shuo, JIANG Jian-fu, LIU Chong-huai, WANG Yong, LIU Guo-tian, WANG Yue-jin, XU Yan. Development and application of KASP marker for high throughput detection of the seedless trait in grapevine[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3269-3283.
[6] YANG Xiao-yin, XU Bao-chen, LEI Hong-mei, LUO Xin, ZHU Li-xian, ZHANG Yi-min, MAO Yan-wei, LIANG Rong-rong. Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2445-2455.
[7] XU Teng-fei, GUO Yu-rui, YUAN Xiao-jian, CHU Yan-nan, WANG Xiao-wei, HAN Yu-lei, WANG Wen-yuan, WANG Yue-jin, SONG Rui, FANG Yu-lin, WANG Lu-jun, XU Yan. Effects of exogenous paclobutrazol and sampling time on the efficiency of in vitro embryo rescue in the breeding of new seedless grape varieties[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1633-1644.
[8] YANG Sheng-di, GUO Da-long, PEI Mao-song, WEI Tong-lu, LIU Hai-nan, BIAN Lu, YU Ke-ke, ZHANG Guo-hai, YU Yi-he. Identification of the DEAD-box RNA helicase family members in grapevine reveals that VviDEADRH25a confers tolerance to drought stress[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1357-1374.
[9] GUO Da-long, LIU Hai-nan, WANG Zhen-guang, GUO Li-li, ZHANG Guo-hai. Sodium dehydroacetate treatment prolongs the shelf-life of ‘Kyoho’ grape by regulating oxidative stress and DNA methylation[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1525-1533.
[10] XU Teng-fei, YANG Xin, ZHANG Meng, GUO Shui-huan, FU Wen-jing, ZHOU Bi-jiang, LIU Yu-jia, MA Hai-jun, FANG Yu-lin, YANG Gang, MENG Jiang-fei. The use of widely targeted metabolite profiling to reveal the senescence changes in postharvest ‘Red Globe’ (Vitis vinifera) grape berries[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1028-1043.
[11] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[12] MA Xuan-yan, JIAO Wei-qi, LI Heng, ZHANG Wei, REN Wei-chao, WU Yan, ZHANG Zhi-chang, LI Bao-hua, ZHOU Shan-yue. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3684-3691.
[13] WANG Li, ZHANG Song-lin, JIAO Chen, LI Zhi, LIU Chong-huai, WANG Xi-ping. QTL-seq analysis of seed size trait in grape provides new molecular insight on seedlessness[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2910-2925.
[14] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
[15] HU Guo-jun, DONG Ya-feng, ZHANG Zun-ping, FAN Xu-dong, REN Fan. Elimination of grapevine fleck virus and grapevine rupestris stem pitting-associated virus from Vitis vinifera 87-1 by ribavirin combined with thermotherapy[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2463-2470.
No Suggested Reading articles found!