Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3465-3483    DOI: 10.1016/j.jia.2024.12.039
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries

Mingxin Feng1, Ying Hu1, Xin Yang1, Jingwen Li1, Haochen Wang1, Yujia Liu1, Haijun Ma2, Kai Li3, Jiayin Shang3, Yulin Fang1, Jiangfei Meng1#

1 College of Enology, Northwest A&F University, Yangling 712100, China

2 College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China

3 Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China

 Highlights 
● PC-5p-1112_4500 regulates the postharvest senescence of grape berries.
ARF6, GRF3, TCP2, CP1, MYBA2, and WRKY72 are closely associated with grape berry senescence.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
鲜食葡萄的采后衰老阶段包含一系列生物学过程。MicroRNAs(miRNAs)在转录后水平调控下游基因的表达;然而,miRNAs是否参与葡萄采后衰老过程仍不明确。本研究采用小RNA高通量测序技术,鉴定了‘红地球’(Vitis vinifera)葡萄在采收后4°C条件下贮藏0,30和60天后(分别记为RG0、RG30、RG60)衰老相关miRNAs差异变化。结果共鉴定出42个已知的miRNAs和219个新的候选miRNAs。在果实衰老过程中,PC-3p-3343_1921、miR2950、miR395k、miR2111、miR159c、miR169q、PC-5p-1112_4500和miR167b的表达水平发生显著变化(p<0.05)。降解组测序共鉴定出218个靶基因,涉及细胞壁组织、三羧酸循环、病害防御、碳代谢、激素信号传导、花青素代谢途径和能量调控等过程,其中ARF6, GRF3, TCP2, CP1, MYBA2和WRKY72与果实衰老密切相关。此外,本研究还通过双荧光素酶报告基因实验和葡萄果实瞬时转化实验,验证了PC-5p-1112_4500靶向剪切的3个功能未知的靶基因(VIT_00s2146g00010、VIT_02s0012g01750和VIT_03s0038g00160),并证实了它们具有调控果实衰老的功能。这些结果深化了人们对miRNAs在调控葡萄果实衰老和延长园艺产品货架期方面作用的认识。基于这些发现,本研究提出了一种新的理论策略,即通过调控关键miRNAs(例如PC-5p-1112_4500)的表达来延缓园艺产品的采后衰老,从而延长其货架期。


Abstract  

The postharvest senescence phase of table grapes comprises a series of biological processes.  MicroRNAs (miRNAs) regulate downstream genes at the post-transcriptional level; however, whether miRNAs are involved in postharvest grape senescence remains unclear.  We used small RNA sequencing to identify postharvest-related miRNAs in ‘Red Globe’ (Vitis vinifera) grapes harvested after 0, 30, and 60 d of storage at 4°C (RG0, RG30, RG60).  In total, 42 known and 219 novel miRNA candidates were obtained.  During fruit senescence, the expression of PC-3p-3343_1921, miR2950, miR395k, miR2111, miR159c, miR169q, PC-5p-1112_4500, and miR167b changed significantly (P<0.05).  Degradation sequencing identified 218 targets associated with cell wall organization, tricarboxylic acid (TCA) cycling, pathogen defense, carbon metabolism, hormone signaling, the anthocyanin metabolism pathway, and energy regulation, of which ARF6, GRF3, TCP2, CP1, MYBA2, and WRKY72 were closely related to fruit senescence.  We also verified that VIT_00s2146g00010, VIT_02s0012g01750, and VIT_03s0038g00160 with unknown functions are cleaved by senescence-related PC-5p-1112_4500 via the dual luciferase assay, and the transient transformation of grape berries showed that they regulate berry senescence.  These results deepen our understanding of the role of miRNAs in regulating grape berry senescence and prolonging the shelf life of horticultural products.  Based on these results, we propose a new theoretical strategy for delaying the postharvest senescence of horticultural products by regulating the expression of key miRNAs (e.g., PC-5p-1112_4500), thereby extending their shelf life.

Keywords:  ‘Red Globe’ berries       small RNA library        cleaved transcripts        fruit ripening        senescence regulation        post-transcriptional regulators  
Received: 26 June 2024   Online: 31 December 2024   Accepted: 23 December 2024
Fund: This work was supported by the Natural Science Foundation of Ningxia, China (2024AAC02039), the Scientific and Technological Innovation Leadership Talent Program of Ningxia, China (2022GKLRLX07), the National Natural Science Foundation of China (32260727 and 32371924), and China Agriculture Research System (CARS-29-zp-6).
About author:  #Correspondence Jiangfei Meng, Tel/Fax: +86-29-87092107, E-mail: mjfwine@nwafu.edu.cn

Cite this article: 

Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. 2025. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries. Journal of Integrative Agriculture, 24(9): 3465-3483.

Arshad M, Hannoufa A. 2022. Alfalfa transcriptome profiling provides insight into miR156-mediated molecular mechanisms of heat stress tolerance. Genome65, 315–330.

Ba L, Cao S, Ji N, Ma C, Wang R, Luo D. 2022. Exogenous melatonin treatment in the postharvest storage of pitaya fruits delays senescence and regulates reactive oxygen species metabolism. Food Science and Technology42, e15221.

Candar-Cakir B, Arican E, Zhang B. 2016. Small RNA and degradome deep sequencing reveals droughtand tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnology Journal14, 1727–1746.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Dai Z, Meddar M, Delrot S, Gomès E. 2015. Development and implementation of an in vitro culture system for intact detached grape berries. Bio-Protocol5, e1510.

Duan W, Yan J, Li L, Song H, Meng L, Zhang Z, Xu X, Wang Q, Li J. 2024. Silencing Sly-miR167a delayed preharvest ripening of tomato fruit. Postharvest Biology and Technology211, 112828.

Fasoli M, Dal Santo S, Zenoni S, Tornielli G B, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. The Plant Cell24, 3489–3505.

Gan Z, Yuan X, Shan N, Wan C, Chen C, Xu Y, Xu Q, Chen J. 2021. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. Plant Science309, 110948.

Giacomelli J I, Weigel D, Chan R L, Manavella P A. 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytologist195, 766–773.

Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell231512–1522.

Gu C, Guo Z H, Hao P P, Wang G M, Jin Z M, Zhang S L. 2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies58, 6.

Gu T, Xie M, Barbazuk W B, Lee J H. 2021. Biological features between miRNAs and their targets are unveiled from deep learning models. Scientific Reports11, 23825.

Han Y, Zhang C, Sha H, Wang X, Yu Y, Liu J, Zhao G, Wang J, Qiu G, Xu X, Fang J. 2023. Ubiquitin-conjugating enzyme OsUBC11 affects the development of roots via auxin pathway. Rice16, 9.

Hasan M, Singh Z, Shah H M S, Kaur J, Woodward A, Afrifa-Yamoah E, Malik A U. 2023. Oxalic acid: A blooming organic acid for postharvest quality preservation of fresh fruit and vegetables. Postharvest Biology and Technology206, 112574.

Huang J H, Lin X J, Zhang L Y, Wang X D, Fan G C, Chen L S. 2019. MicroRNA sequencing revealed citrus adaptation to long-term boron toxicity through modulation of root development by miR319 and miR171. International Journal of Molecular Sciences20, 1422.

Imahori Y, Takemura M, Bai J. 2008. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biology and Technology49, 54–60.

IOVW (International Organisation of Vine and Wine). 2021. Annual Assessment of the World Vine and Wine Sector in 2021. IOVW, Paris, France.

IOVW (International Organisation of Vine and Wine). 2023. State of the World Vine and Wine Sector in 2023IOVW, Paris, France.

Jarocka-Karpowicz I, Markowska A. 2021. Therapeutic potential of jasmonic acid and its derivatives. International Journal of Molecular Sciences22, 8437.

Jia H, Song J, Yang W, Zhang X, Zhu Y, Zhao D, Wang H. 2023. Genome-wide characterization of AP2/ERF genes and their potential roles in bulb and bolt development in Allium sativumScientia Horticulturae322, 112359.

Jin L, Yarra R, Zhou L, Zhao Z, Cao H. 2020. miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 Biotech10, 495.

Kalwan G, Priyadarshini P, Kumar K, Yadava Y K, Yadav S, Kohli D, Gill S S, Gaikwad K, Hegde V, Jain P K. 2023. Genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.). International Journal of Biological Macromolecules252, 126324.

Kang T, Yu C Y, Liu Y, Song W M, Bao Y, Guo X T, Li B, Zhang H X. 2020. Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Frontiers in Plant Science10, 1664.

Kramer M F. 2011. STEM-LOOP RT-qPCR for miRNAS. Current Protocols in Molecular Biology, doi:10.1002/0471142727.mb1510s95.

Kumar R. 2014. Role of microRNAs in biotic and abiotic stress responses in crop plants. Applied Biochemistry and Biotechnology174, 93–115.

Li X, Guo C, Ahmad S, Wang Q, Yu J, Liu C, Guo Y. 2019. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses. Biomolecules9, 317.

Liu Z, Boachon B, Lugan R, Tavares R, Erhardt M, Mutterer J, Demais V, Pateyron S, Brunaud V, Ohnishi T, Pencik A, Achard P, Gong F, Hedden P, Werck-Reichhart D, Renault H. 2015. A conserved cytochrome P450 evolved in seed plants regulates flower maturation. Molecular Plant8, 1751–1765.

Massolo J F, Concellon A, Chaves A R, Vicente A R. 2011. 1-Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biology and Technology59, 10–15.

Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. 2021. miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany184, 104369.

Panigrahy M, Panigrahi K C S, Poli Y, Ranga A, Majeed N. 2022. Integrated expression analysis of small RNA, degradome and microarray reveals complex regulatory action of miRNA during prolonged shade in Swarnaprabha rice. Biology-Basel11, 798.

Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. 2019. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. Journal of Experimental Botany70, 2699–2715.

Qian M, Ni J, Niu Q, Bai S, Bao L, Li J, Sun Y, Zhang D, Teng Y. 2017. Response of miR156-SPL module during the red peel coloration of bagging-treated Chinese sand pear (Pyrus pyrifolia Nakai). Frontiers in Physiology8, 550.

Raya-Gonzalez J, Prado-Rodriguez J C, Ruiz-Herrera L F, Lopez-Bucio J. 2023. Loss-of-function of MEDIATOR 12 or 13 subunits causes the swelling of root hairs in response to sucrose and abscisic acid in Arabidopsis. Plant Signaling & Behavior18, 2191460.

Shabankareh S H, Asghari A, Azadbakht M, Vakilian K A. 2023. Physical and physiological characteristics, as well as miRNA concentrations, are affected by the storage time of tomatoes. Food Chemistry429, 136792.

Sonntag F, Liu H, Neugart S. 2023. Nutritional and physiological effects of postharvest UV radiation on vegetables: A review. Journal of Agricultural and Food Chemistry71, 9951–9972.

Tang N, An J, Deng W, Gao Y, Chen Z, Li Z. 2020. Metabolic and transcriptional regulatory mechanism associated with postharvest fruit ripening and senescence in cherry tomatoes. Postharvest Biology and Technology168, 111274.

Ullah C, Schmidt A, Reichelt M, Tsai C J, Gershenzon J. 2022. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytologist235, 701–717.

Vangelisti A, Guidi L, Cavallini A, Natali L, Lo Piccolo E, Landi M, Lorenzini G, Malorgio F, Massai R, Nali C, Pellegrini E, Rallo G, Remorini D, Vernieri P, Giordani T. 2020. Red versus green leaves: Transcriptomic comparison of foliar senescence between two Prunus cerasifera genotypes. Scientific Reports10, 1959.

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science151, 59–66.

Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K, Wang B. 2019. Sweet cherry fruit miRNAs and effect of high CO2 on the profile associated with ripening. Planta249, 1799–1810.

Wang Y, Liu W, Wang X, Yang R, Wu Z, Wang H, Wang L, Hu Z, Guo S, Zhang H, Lin J, Fu C. 2020. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Horticulture Research7, 118.

Xu T, Yang X, Zhang M, Guo S, Fu W, Zhou B, Liu Y, Ma H, Fang Y, Yang G, Meng J. 2022. The use of widely targeted metabolite profiling to reveal the senescence changes in postharvest ‘Red Globe’ (Vitis vinifera) grape berries. Journal of Integrative Agriculture21, 1028–1043.

Xu X, Yin L, Ying Q, Song H, Xue D, Lai T, Xu M, Shen B, Wang H, Shi X. 2013. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassaPLoS ONE8, e70959.

Xue J, Lu D, Wang S, Lu Z, Liu W, Wang X, Fang Z, He X. 2021. Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Scientific Reports11, 14083.

Yang Z M, Chen J. 2013. A potential role of microRNAs in plant response to metal toxicity. Metallomics5, 1184.

Yao F, Zhu H, Yi C, Qu H, Jiang Y. 2015. MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life. BMC Plant Biology15, 181.

Yu Y, Sun F, Chen N, Sun G, Wang C Y, Wu D X. 2021. MiR396 regulatory network and its expression during grain development in wheat. Protoplasma258, 103–113.

Zamora R, Alcon E, Hidalgo F J. 2024. Addition of olivetol to crackers decreases malondialdehyde content and produces malondialdehyde-olivetol adducts. Food Chemistry432, 137046.

Zhang H, Cun Y, Wang J, Wu M, Li X, Liang Q, Wang C, Zhao L, Deng J. 2022. Acetylsalicylic acid and salicylic acid alleviate postharvest leaf senescence in Chinese flowering cabbage (Brassica rapa var. parachinensis). Postharvest Biology and Technology194, 112070.

Zhang L, Sun C, Tian H, Xu J, Wu X. 2024. Foliar spraying of boron prolongs preservation period of strawberry fruits by altering boron form and boron distribution in cell. Frontiers in Plant Science151457694.

Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. 2019. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. Horticulture Research6, 139.

Zhu Y, Liu Y, Wang W, Li H, Liu C, Dou L, Wei L, Cheng W, Bao M, Yi Q, He Y. 2023. Identification and characterization of CYC2-like genes related to floral symmetric development in Tagetes erecta (Asteraceae). Gene889, 147804.

[1] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
No Suggested Reading articles found!