Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Transcriptomic changes and VvMYBPA1 function analysis reveal the molecular mechanism of drought tolerance in grapevine

Shuzhen Jiao1,2 , Yaping Huang1, Shixiong Lu1, Han Wang1 , Yanmei Li1, Juan Mao1, Baihong Chen1#

1 College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China

2 School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China

 Highlights 

1.Grafting attenuates drought damage via enhanced phytohormones and antioxidant enzymes with reduced oxidative stress.

2.Transcriptomic profiling revealed drought-responsive DEGs.

3.VvMYBPA1 overexpression confers drought tolerance validated in Arabidopsis and grape callus, revealing novel regulatory mechanisms.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  干旱胁迫对葡萄植株的生长发育具有显著负面影响。砧木嫁接技术虽广泛用于提升葡萄果实品质及抗旱性,但其遗传调控机制尚未明晰。本研究通过对比干旱胁迫下嫁接苗(阳光玫瑰接穗/1103P砧木)与自根苗(阳光玫瑰叶片以及嫁接苗和自根苗(1103P)根系的生理及转录组发现:嫁接植株通过提升植物激素水平与抗氧化酶活性、降低过氧化氢及丙二醛含量等方式有效缓解了叶片干旱损伤。转录组分析共鉴定到11,855个叶片差异表达基因和11,197个根部差异基因。基于RNA-seq数据的加权基因共表达网络分析(WGCNA)显示,绿黄、黑色、青绿、鲑红及蓝色模块与干旱胁迫显著相关。通路富集分析表明差异表达的基因主要参与植物激素信号转导和MAPK信号通路,同时检测到916个可能调控干旱胁迫的转录因子基因(TFs),分属不同基因家族。通过12个干旱响应基因的实时荧光定量PCR验证了转录组数据可靠性。此外,拟南芥和葡萄愈伤组织中VvMYBPA1基因的过表达均显著增强抗旱性。本研究为解析葡萄干旱适应性的调控机制提供了新见解。




Abstract  

Drought stress negatively affects grapevine growth and development. Grafting with rootstock is widely used to improve the quality of grape fruits and confer drought stress tolerance, but the underlying genetics and regulatory mechanism is unclear. Hence, we investigated the physiologic and transcriptomic profiles in the leaves of grafted SM/1103P (SM shoot/1103P root) and self-rooted SM (Shine Muscat) as well as roots of grafted SM/1103P and self-rooted 1103P under drought stress conditions. The results indicated that grafted grapevine effectively attenuated drought damage in grape leaves by increasing phytohormone levels and antioxidant enzyme activity, reducing H2O2 and MDA content. Transcriptomic profiling revealed a total of 11,855 and 11,197 differentially expressed genes (DEGs) were identified in grape leaves and roots respectively. Weighted correlation network analysis (WGCNA) was performed based on the RNA-seq data, and five modules (greenyellow, black, turquoise, salmon and blue) were significantly correlated to drought stress. Pathway analysis showed that DEGs were enriched in the plant hormone signal transduction and MAPK signaling pathway. 916 transcription factor genes (TFs) belonging to different gene families were detected that may participate in regulating the drought stress. Quantitative real-time polymerase chain expression analysis of twelve drought stress responsive DEGs were used to verify the transcriptome data. Furthermore, overexpression of VvMYBPA1 in Arabidopsis thaliana and grape callus improved drought tolerance. Our findings provided new insights into to the regulation of mechanism for improving grapevine adaptation to drought. 

Keywords:  grapevine       physiological change       transcriptome       drought stress       VvMYBPA1  
Online: 18 December 2025  
Fund: 

This work was supported by grants from Key Project of Natural Science Foundation of Gansu Province (22JR5RA831), National Natural Science Foundation of China (No. 32460725), and Ningxia Natural Science Foundation project (2024AAC05037).

Cite this article: 

Shuzhen Jiao, Yaping Huang, Shixiong Lu, Han Wang , Yanmei Li, Juan Mao, Baihong Chen. 2025. Transcriptomic changes and VvMYBPA1 function analysis reveal the molecular mechanism of drought tolerance in grapevine. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.028

Anders S, Pyl P T, Huber W. 2015. HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166-169.

Anjum S, Xie X, Wang L, Saleem M, Man L. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032.

Bao D, Chang S, Li X, Qi Y. 2024. Advances in the study of auxin early response genes: Aux/IAA, GH3, and SAURCrop Journal, 12, 964-978.

Berdeja M, Nicolas P, Kappel C, Dai ZW, Hilbert G, Peccoux A, Lafontaine M, Ollat N, Gomès E, Delrot S. 2015. Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2, 15012.

Cai H, Tian S, Dong H, Guo C J G. 2015. Pleiotropic effects of TaMYB3R1 on plant development and response to osmotic stress in transgenic Arabidopsis. Gene, 558, 227-234.

Cao Z, Zhang S, Wang R, R F H. 2013.Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. Plos One, 8, e69955.

Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25-54.

Chen Y, Sun X, Zheng C, Zhang S, Yang J. 2018. Grafting onto artemisia annua improves drought tolerance in chrysanthemum by enhancing photosynthetic capacity. Horticultural Plant Journal, 4, 117-125.

Chen Z, Lu X, Li Q, Li T, Zhu L, Ma Q, Wang J, Lan W, Ren J. 2021. Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis.Journal of Experimental Botany, 72, 6319–6335.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735-743.

Coolen S, Proietti S, Hickman R, Davila Olivas N H, Huang P P, Van Verk M C, Van Pelt J A, Wittenberg A H, De Vos M, Prins M, Van Loon J J, Aarts M G, Dicke M, Pieterse C M, Van Wees S C. 2016. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 86, 249-267.

Corso M, Bonghi C. 2014. Mini review: Grapevine rootstock effects on abiotic stress tolerance. Plant Science, 1,108-113.

Debora G, Sofia P, Alessandra F, Marco V, Chiara P. 2016. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiology and Biochemistry, 1, 23-32.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science,15, 573-581.

Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. 2018. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [pennisetum glaucum (l.) r. Br]. Plos One,13, e0195908.

Finkelstein R R, Lynch T J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,12, 599-609.

Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G. 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.

Gao J F. 2006. Experimental Guidance for Plant Physiology. Higher education press, Beijing, China. (in Chinese).

Gao S, Zhang Y, Yang Z, Song J. 2014. ATMYB20 is negatively involved in plant adaptive response to drought stress. Plant Soil, 376, 433-443.

Guo M, Liu J H, Ma X, Luo D X, Gong Z H, Lu M H. 2016.The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 7, 114.

Jakoby M, Weisshaar B, Drge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Group B. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7, 106-111.

Jaume F, Matilde B, Josefina B, Jean-Marc D, Alexander G, Jeroni G, Miguel J, Alícia P, Miquel R C, Carlota S. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. Berlandieri×V. Rupestris). Journal of Experimental Botany, 60, 2361-2377.

Kielbowicz-Matuk A. 2012. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. Plant Science, 185-186, 78-85.

Lee J M, Kubota C, Tsao S J, Bie Z, Echevarria P H, Morra L, Oda M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105.

Li C, Ng K Y, Fan L M. 2015. MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany, 114, 80-91.

Li C, Pan Y, Cui J, Lu X, Yu W. 2025. Mechanism of ABA in plants exposed to cold stress. Agronomy, 15, 403.

Li W, Fu L, Geng Z, Zhao X, Liu Q, Jiang X. 2020. Physiological characteristic changes and full-length transcriptome of rose (Rosa Chinensis) roots and leaves in response to drought stress. Plant and Cell Physiology, 61, 2153-2166.

Lim C W, Luan S, Lee S C. 2014. A prominent role for RCAR3-mediated aba signaling in response to pseudomonas syringae pv. Tomato DC3000 infection in Arabidopsis. Plant and Cell Physiology, 55,1691-1703.

Liu J, Li J, Su X, Xia Z J E.2014. Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environmental Experimental Botany, 107, 173-179.

Liu Y, Zhang M, Meng Z, Wang B, Chen M. 2020. Research progress on the roles of cytokinin in plant response to stress. International Journal of Molecular Sciences, 21, 6574.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402-408.

Loraine A E, McCormick S, Estrada A, Patel K, Qin P.2013. RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiology, 162, 1092-1109.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15,550.

Lovisolo S F, Alessandra. 2016. Grapevine adaptations to water stress: New perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28, 53-66.

Mao H, Yu L, Han R, Li Z, Liu H. 2016. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 105, 55-66.

Massimiliano C, Alessandro V, Fiorenza Z, Mohamed Z, Elie M, Tommaso N, Nicola V, Franco M, Giorgio V, Mondher B. 2016. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in cabernet sauvignon berries. Frontiers in Plant Science, 7, 69-69.

Meher Shivakrishna P, Ashok Reddy K, Manohar Rao D. 2018. Effect of PEG-6000 imposed drought stress on rna content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25, 285-289.

Meng J F, Xu T F, Wang Z Z, Fang Y L, Xi Z M, Zhang Z W. 2014. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: Antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research, 57, 200-212.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410.

Mudge K, Janick J, Scofield S, Goldschmidt E E. 2009. A history of grafting. Horticulture Research, 35, 437-493.

Muriira N G, Xu W, Muchugi A, Xu J, Liu A. 2015. De novo sequencing and assembly analysis of transcriptome in the sodom apple (Calotropis gigantea). BMC Genomics, 16, 723.

Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K J P J. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. Plant Journal, 77, 367-379.

Pandey N, Iqbal Z, Pandey B K, Sawant S V. 2017. Mechanism of Plant Hormone Signaling under Stress. Wiley-Blackwell, America.

Pucker B, Pandey, Weisshaar B, Stracke R. 2020. The R2R3‐MYB gene family in banana (Musa acuminata): Genome‐wide identification, classification and expression patterns. PLoS One, 15, e0239275.

Rahimi M, Kordrostami M, Maleki M, ModaresKia M.2016.Investigating the effect of drought stress on expression of WRKY1 and EREBP1 genes and antioxidant enzyme activities in lemon balm (Melissa Officinalis L.). Biotech, 6, 99.

Rogiers S Y, Holzapfel B P, Smith J P. 2011. Sugar accumulation in roots of two grape varieties with contrasting response to water stress. Annals of Applied Biology, 159, 399-413.

Sabir I A, Manzoor M A, Shah I H, Liu X, Zahid M S, Jiu S, Wang J, Abdullah M, Zhang C. 2022. MYB transcription factor family in sweet cherry (Prunus avium L.): Genome‐wide investigation, evolution, structure, characterization and expression patterns. BMC Plant  Biology, 22, 2.

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Yamaguchi-Shinozaki S K. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 18, 1292-1309.

Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. Plant Cell, 27, 9-19.

Sara T, Marco V, Luna C, Andrea S, Claudio L. 2013. Rootstock control of scion response to water stress in grapevine. Environmental and Experimental Botany, 93, 20-26.

Seki M, Narusaka M, Ishida J, Nanjo T, Shinozaki K J T P J. 2002. Monitoring the expression proles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31, 279-292.

Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 24, 2578-2595.

Soar C J, Dry P R, Loveys B R. Scion photosynthesis and leaf gas exchange in Vitis Vinifera L. Cv. Shiraz: Mediation of rootstock effects via xylem sap ABA. 2006. Australian Journal of Grape and Wine Research, 12, 82-96.

Strange K.1994. Cellular and Molecular Physiology of Cell Volume Regulation. Crc Press, America.

Verdeil J L, Pascaud F, Torregrosa L, Thibaud J B. 2010. A grapevine shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant Journal, 61, 58-69.

Walz C, Juenger M, Schad M, Kehr J. 2002. Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant Journal, 31, 189-197.

Wang H, Wang H, Shao H, Tang X. 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67.

Wang L, Hu Z, Zhu M, Zhu Z, Hu J, Qanmber G, Chen G. 2017a. The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum l.). Plant Cell Tissue and Organ Culture, 129, 161-174.

Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F. 2017b. Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor. Plant and Cell Physiology, 58,1764-1776.

Wang X, Zhao S, Zhou R, Liu Y, Guo L, Hu H. 2023. Identification of Vitis vinifera MYB transcription factors and their response against grapevine berry inner necrosis virus. BMC Plant Biology, 23, 279.

Wang Z, Gerstein M, Snyder M. 2009. RNA-seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics,10,57-63.

Wani S H, Kumar V, Shriram V, Sah S K. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4, 162-176.

Warschefsky E J, Klein L L, Frank M H, Chitwood D H, Miller A J. 2016. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science, 21, 418-437.

Wei K, Chen H. 2018. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biology, 18, 309.

Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 67, 539-574.

Yoshida T, Mogami J, Yamaguchi-Shinozaki KJCOiPB.2014. ABA-dependent and aba-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21, 133-139.

Yu K, Xu Q, Da X, Guo F, Ding Y, Deng XJBG. 2012. Transcriptome changes during fruit development and ripening of sweet orange ( Citrus sinensis ). BMC Genomics, 13,10.

Yu Y T, Wu Z, Lu K, Bi C, Liang S, Wang X F, Zhang D P. 2016. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Molecular Biology, 90, 267-279.

Zareen S, Ali A, Yun D J. 2024. Significance of ABA biosynthesis in plant adaptation to drought stress. Journal of Plant Biology67, 175-184.

Zhang C, Ma R, Xu J, Yan J, Guo L, Song J, Feng R, Yu M. 2018. Genome-wide identification and classification of MYB superfamily genes in peach. PLoS One, 13, e0199192.

Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. 2025. Diverse roles of MYB transcription factors in plants. Journal of Integrative Plant Biology, 67, 539-562.

Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Li S, Xin H. 2018. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. Plant Cell Reports, 37, 1159-1172.

Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X. 2012. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. Journal of Experimental Botany, 63, 5873-5885.

Zhao M R, Han Y Y, Feng Y N, Li F, Wang W J. 2012. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 31, 671-685.

Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L. 2019. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19, 564.

Zhuang Z, Bian J, Ren Z, Ta W, Peng Y. 2025. Plant Aux/IAA gene family: significance in growth, development and stress responses. Agronomy, 15, 1228. 

[1] Min Qiu, Chun Yan, Huaibo Li, Haiyang Zhao, Siqun Tu, Yaru Sun, Saijiang Yong, Ming Wang, Yuanchao Wang. toGC: A pipeline to correct gene model for functional excavation of dark GPCRs in Phytophthora sojae[J]. >Journal of Integrative Agriculture, 2026, 25(1): 150-156.
[2] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[3] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[4] Xinyi Mao, Xuan Zhao, Zhi Luo, Ao He, Meng Yang, Mengjun Liu, Jin Zhao, Ping Liu. Transcriptome-based analysis of lignin accumulation in the regulation of fruit stone development and endocarp hardening in Chinese jujube[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2217-2228.
[5] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[6] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[7] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[8] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[9] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[10] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[11] Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou, Zhongxia Wu. Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body[J]. >Journal of Integrative Agriculture, 2025, 24(2): 668-679.
[12] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[13] Jing Wang, Zexin Sun, Lei Tian, Wei Sun, Xinning Wang, Zhihao Wang, Zhiying Wang, Zhao Li, Wei Liu, Qianchi Ma, Chuanyou Ren, Xinning Gao, Yue Li, Liwei Wang, Xiaoguang Wang, Chunji Jiang, Chao Zhong, Xinhua Zhao, Haiqiu Yu. Transcriptome-metabolome and anatomy conjoint analysis of vital component change of photosynthesis in foxtail millet under different drought conditions[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4588-4612.
[14] Xueming Dong, Jiwei Chen, Qiang Zhou, Dong Luo, Longfa Fang, Wenxian Liu, Zhipeng Liu. Pod-shattering characteristic differences between shattering-resistant and shattering-susceptible common vetch accessions are associated with lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4528-4545.
[15] Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li. Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4546-4560.
No Suggested Reading articles found!