Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3269-3283    DOI: 10.1016/j.jia.2023.10.014
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
Development and application of KASP marker for high throughput detection of the seedless trait in grapevine

WANG Fu-qiang1, BIAN Lu1, QIU Peng-peng1, GUO Shuo1, GUO Jing-han1, GUO Chen-shuo1, JIANG Jian-fu2, LIU Chong-huai2, WANG Yong3, LIU Guo-tian1, WANG Yue-jin1, XU Yan1#

1 Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
2 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, P.R.China
3 Research Institute of Grape and Melon of Xinjiang Uygur Autonomous Region, Shanshan 838200, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

分子标记辅助选择(MAS)可以显著提高无核葡萄的育种效率,加快育种进程。本研究基于VviAGL11基因的单碱基突变位点(Chr.18:26889437A/C))开发了KASP_VviAGL11VviAGL11_410标记,并以SSR标记p3_VvAGL115U_VviAGL11标记作对比,分别在101份葡萄品种和81份葡萄F1杂交株系进行检测。结果认为KASP_VviAGL11VviAGL11_410均检测出A等位基因时与葡萄无核性状紧密关联,且准确率为100%,而p3_VvAGL115U_VviAGL11由于容易产生假阳性导致准确率偏低。然后通过评估不同标记使用的技术优缺点,明确了KASP_VviAGL11标记具有更加简单、经济、高效、精确的优势。最终,本研究优化了以KASP_VviAGL11标记为核心的无核葡萄分子标记辅助选择育种过程,为加快无核葡萄新品种培育进程提供关键技术支持。



Abstract  

Molecular marker-assisted selection (MAS) can significantly accelerate and improve the efficiency of the breeding process in seedless grape cultivars.  In this study, we developed the KASP_VviAGL11 and VviAGL11_410 markers based on a single nucleotide polymorphism (SNP) site (Chr18: 26889437 (A/C)) of the VviAGL11 gene, and compared them with previously reported SSR markers p3_VvAGL11 and 5U_VviAGL11 by testing 101 cultivars and 81 F1 hybrid progenies.  The results showed that both of the proposed markers obtained 100% accuracy rates in detecting allele A, which was closely associated with the seedless trait in grapes, while p3_VvAGL11 and 5U_VviAGL11 had lower accuracy rates due to their tendency to produce false positives.  After careful evaluation of the technical advantages and disadvantages associated with these markers, we concluded that KASP_VviAGL11 was superior in terms of simplicity, cost-effectiveness, efficiency, and accuracy.  Thus, we optimized the process of molecular MAS for seedless grapes, focusing on the KASP_VviAGL11 marker as a central component, to provide key technical support for the development of new seedless grape cultivars.

Keywords:  seedless grape        MAS        KASP        SSR  
Received: 26 May 2023   Accepted: 03 October 2023
Fund: This work was supported by the earmarked fund for the China Agriculture Research System of MOF and MARA (CARS-29-yc-3 ), Project of Agricultural Breeding in Ningxia Hui Autonomous Region (NXNYYZ20210104) and the Key Industrial Innovation Chain Project in Shaanxi Province (2021ZDLNY04-08).
About author:  WANG Fu-qiang, E-mail: wangfuqiang@nwafu.edu.cn; #Correspondence XU Yan, E-mail: yan.xu@nwafu.edu.cn

Cite this article: 

WANG Fu-qiang, BIAN Lu, QIU Peng-peng, GUO Shuo, GUO Jing-han, GUO Chen-shuo, JIANG Jian-fu, LIU Chong-huai, WANG Yong, LIU Guo-tian, WANG Yue-jin, XU Yan. 2023. Development and application of KASP marker for high throughput detection of the seedless trait in grapevine. Journal of Integrative Agriculture, 22(11): 3269-3283.

Akkurt M, Cakir A, Shidfar M, Celikkol B P, Soylemezoglu G. 2012. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genetics and Molecular Research, 11, 2288-2294.

Akkurt M, Tahmaz H, Veziroglu S. 2019. Recent developments in seedless grapevine breeding. South African Journal of Enology and Viticulture, 40, 260-265.

Amato A, Cardone M F, Ocarez N, Alagna F, Ruperti B, Fattorini C, Velasco R, Mejía N, Zenoni S, Bergamini C. 2022. VviAGL11 self-regulates and targets hormone- and secondary metabolism-related genes during seed development. Horticulture Research, 9, uhac133.

Bennici S, Di Guardo M, Distefano G, La Malfa S, Puglisi D, Arcidiacono F, Ferlito F, Deng Z N, Gentile A, Nicolosi E. 2019. Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Scientia Horticulturae, 252, 316-323.

Bergamini C, Cardone M F, Anaclerio A, Perniola R, Pichierri A, Genghi R, Alba V, Forleo L R, Caputo A R, Montemurro C, Blanco A, Antonacci D. 2013. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Molecular Biotechnology, 54, 1021-1030.

Bouquet A, Danglot Y. 1996. Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis, 35, 35–42.

Cabezas J A, Cervera M T, Ruiz-Garcia L, Carreno J, Martinez-Zapater J M. 2006. A genetic analysis of seed and berry weight in grapevine. Genome, 49, 1572-1585.

Chen D D, Guan L P, He L L, Song Y H, Zhang P, Liu S J. 2021. Commonality identification of molecular markers linked to seedless genes in grape. Scientia Agricultura Sinica, 54, 4880-4893. (in Chinese)

Grewal S, Hubbart-Edwards S, Yang C, Devi U, Baker L, Heath J, Ashling S, Scholefield D, Howells C, Yarde J, Isaac P, King I P, King J. 2020. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays. Plant Biotechnology Journal, 18, 743-755.

Lahogue F, This P, Bouquet A. 1998. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics, 97, 950-959.

Ledbetter C A, Ramming D W. 1989. Seedlessness in grapes. Horticultural Reviews, 11, 159-184.

Li J, Wang X H, Wang X P, Wang Y J. 2015. Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue and Organ Culture, 120, 861-880.

Li T M, Li Z Q, Yin X, Guo Y R, Wang Y J, Xu Y. 2018. Improved in vitro Vitis vinifera L. embryo development of F1 progeny of ‘Delight’ × ‘Ruby seedless’ using putrescine and marker-assisted selection. In Vitro Cellular & Developmental Biology Plant, 54, 291-301.

Li Z Q, Jiao Y T, Zhang C, Dou M R, Weng K, Wang Y J, Xu Y. 2021. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnology Journal, 19, 1824-1838.

Mejía N, Hinrichsen P. 2003. A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Horticulturae, 603, 559-564.

Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono Mde L, Ramos R, Le Cunff L, Boursiquot J M, Hinrichsen P, Adam-Blondon A F. 2011. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology, 11, 57.

Ocarez N, Jimenez N, Nunez R, Perniola R, Marsico A D, Cardone M F, Bergamini C, Mejia N. 2020. Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for VviAGL11-based gene-assisted selection. Genes, 11, 151.

Pellerone F I, Edwards K J, Thomas M R. 2001. Grapevine microsatellite repeats: Isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis: Journal of Grapevine Research, 40, 179-186.

Pratt C. 1971. Reproductive anatomy in cultivated grapes A review. American Journal of Enology and Viticulture, 22, 92-109.

Royo C, Torres-Perez R, Mauri N, Diestro N, Cabezas J A, Marchal C, Lacombe T, Ibanez J, Tornel M, Carreno J, Martinez-Zapater J M, Carbonell-Bejerano P. 2018. The major origin of seedless grapes is associated with a missense mutation in the MADS-Box gene VviAGL11. Plant Physiology, 177, 1234-1253.

Semagn K, Babu R, Hearne S, Olsen M. 2014. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1-14.

Varoquaux F, Blanvillain R, Delseny M, Gallois P. 2000. Less is better: New approaches for seedless fruit production. Trends in Biotechnology, 18, 233-242.

Vihinen M. 2012. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 13, S2.

Wang F Q, Fan X C, Zhang Y, Liu C H, Jiang J F. 2020. Application and prospect of SNP molecular markers in crop variety identification. Journal of Plant Genetic Resources, 21, 1308–1320. (in Chinese)

Wang F Q, Fan X C, Zhang Y, Sun L, Liu C H, Jiang J F. 2022. Establishment and application of an SNP molecular identification system for grape cultivars. Journal of Integrative Agriculture, 21, 1044-1057.

Wang Y J, Olusola L. 2002. Application and synthesis on the DNA probe for detecting seedless genes in grapevine. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 30, 42-46. (in Chinese)

Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. 2021. Development and application of KASP marker specific for rice blast resistance Pi2 gene. Journal of Plant Genetic Resources, 22, 1314-1321. (in Chinese)

Zhao Y, Liu X D, Zhao H K, Yuan C P, Qi G X, Wang Y M, Dong Y S. 2017. Comparison of methods for SNP genotyping in soybean. Molecular Plant Breeding, 15, 3540-3546. (in Chinese)

[1] TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2719-2728.
[2] NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1277-1286.
[3] WANG Li-ning, GAO Wei, WANG Qiong-ying, QU Ji-bin, ZHANG Jin-xia, HUANG Chen-yang. Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers[J]. >Journal of Integrative Agriculture, 2019, 18(3): 580-589.
[4] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
[5] LI Ming-na, LONG Rui-cai, FENG Zi-rong, LIU Feng-qi, SUN Yan, ZHANG Kun, KANG Jun-mei, WANG Zhen, CAO Shi-hao. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(01): 184-196.
[6] Kiflom Weldu Okubazghi, LI Xiao-na, CAI Xiao-yan, WANG Xing-xing, CHEN Hao-dong, ZHOU Zhong-li, WANG Chun-ying, WANG Yu-hong, LIU Fang, WANG Kun-bo. Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2402-2412.
[7] WANG Jian, HOU Lu, WANG Ruo-yu, HE Miao-miao, LIU Qing-chang. Genetic diversity and population structure of 288 potato (Solanum tuberosum L.) germplasms revealed by SSR and AFLP markers[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2434-2443.
[8] LU Jia-ling, CHEN Can, LIU Peng, HE Zhong-hu, XIA Xian-chun. Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2461-2468.
[9] WANG Li-xia, LIN Fan-yun, LI Lin-hai, LI Wei, YAN Zhe, LUAN Wei-jiang, PIAO Ri-hua, GUAN Yuan, NING Xue-cheng, ZHU Li, MA Yan-song, DONG Zhi-min, ZHANG Hai-yan, ZHANG Yue-qiang, GUAN Rongxia, ...... . Genetic diversity center of cultivated soybean (Glycine max) in China - New insight and evidence for the diversity center of Chinese cultivated soybean[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2481-2487.
[10] ZHOU Yu, CHAO Gui-mei, LIU Jia-jia, ZHU Ming-qi, WANG Yang, FENG Bai-li. Genetic diversity of Ustilago hordei in Tibetan areas as revealed by RAPD and SSR[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2299-2308.
[11] Alireza Tarang, Anahita Bakhshizadeh Gashti. The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1186-1197.
No Suggested Reading articles found!