Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1424-1435    DOI: 10.1016/j.jia.2023.12.025
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency

Xiaoxia Guo1, 2*, Wanmao Liu3*, Yunshan Yang1, Guangzhou Liu2, Bo Ming2, Ruizhi Xie2, Keru Wang2, Shaokun Li1, 2#, Peng Hou2#

1 Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi 832000, China

2 Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 School of Agriculture, Ningxia University, Yinchuan 750021, China

 Highlights 
There was a corresponding relationship between the light and nitrogen distribution in maize canopy, which was closely related to cumulative leaf area index.
Light-nitrogen matching coefficients (KN/KL) was important for maize yield improvement.  
Cultivar with high light-nitrogen matching coefficients had higher grain yield.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

作物冠层中光和氮的分布是作物对生长环境的适应,有利于提高作物的碳同化能力。那么在不增加额外投入的情况下,是否可以通过改善光氮分布提高作物产量?本研究通过2019年和2020年在奇台进行的田间试验,研究了不同供氮水平和种植密度对两个高产玉米品种(XY335DH618冠层光照和氮素分布的影响,以及冠层生理特性对RUE和产量的调节。结果表明,玉米冠层中光(PPDF)分布自上而下一直减少,而比叶氮(SLN)的分布自上而下先增加后减少。SLN达到最大值时XY335DH618PPDF分别为0.50.3,对应在总叶面积(LAI40.6%49.3%的位置。KN(消系数)/KL(消光系数)可以反映作物光氮协同匹配的能力,XY335中下部冠层KN/KL0.32比DH6180.240.08。XY33517.2 t ha-11.8 g MJ-1)的产量和RUE分别比DH61816.1 t ha-11.6 g MJ-1)高7% (1.1 t ha-1) and 13.7% (0.2 g MJ-1)。因此,当上部和中部冠层中LAI的比例较小时,可以改善群体光照分布,从而有助于调动氮分布,保持较高的KNKN/ KL。高种植密度条件下,当玉米养分需求被满足时(N360),KN/KL是反映玉米群体光氮协同匹配与产量和光氮效率协同提升的关键参数。该研究对今后玉米高产高效栽培及育种具有重要借鉴意义。



Abstract  
The distributions of light and nitrogen within a plant’s canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.  So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?  In this study, the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two high-yielding maize cultivars (XY335 and DH618) and the regulatory effects of canopy physiological characteristics on radiation use efficiency (RUE) and yield were studied based on high-yield field experiments in Qitai, Xinjiang Uygur Autonomous Region, China, during 2019 and 2020.  The results showed that the distribution of photosynthetically active photon flux density (PPFD) in the maize canopy decreased from top to bottom, while the vertical distribution of specific leaf nitrogen (SLN) initially increased and then decreased from top to bottom in the canopy.  When SLN began to decrease, the PPDF values of XY335 and DH618 were 0.5 and 0.3, respectively, corresponding to 40.6 and 49.3% of the total leaf area index (LAI).  Nitrogen extinction coefficient (KN)/light extinction coefficient (KL) ratio in the middle and lower canopy of XY335 (0.32) was 0.08 higher than that of DH618 (0.24).  The yield and RUE of XY335 (17.2 t ha–1 and 1.8 g MJ–1) were 7.0% (1.1 t ha–1) and 13.7% (0.2 g MJ–1) higher than those of DH618 (16.1 t ha–1 and 1.6 g MJ–1).  Therefore, better light conditions (where the proportion of LAI in the upper and middle canopy was small) improved the light distribution when SLN started to decline, thus helping to mobilize the nitrogen distribution and maintain a high KN and KN/KL ratio.  In addition, KN/KL was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha–1.  At this level, an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.  The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.


Keywords:  maize       canopy N distribution              canopy light distribution              radiation use efficiency  
Received: 14 August 2023   Accepted: 17 November 2023
Fund: This study was supported by the National Natural Science Foundation of China (32172118), the National Key Research and Development Program of China (2016YFD0300110 and 2016YFD0300101), the Basic Scientific Research Fund of Chinese Academy of Agricultural Sciences, China (S2022ZD05), and the Agricultural Science and Technology Innovation Program, China (CAAS-ZDRW202004).

About author:  Xiaoxia Guo, E-mail: Gguoxiaoxia@163.com; Wanmao Liu, E-mail: Liuwm@nxu.edu.cn; #Correspondence Shaokun Li, Tel/Fax: +86-10-82108891, E-mail: lishaokun@caas.cn; Peng Hou, Tel/Fax: +86-10-82108595, E-mail: houpeng@caas.cn * These authors contributed equally to this study.

Cite this article: 

Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. 2025. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture, 24(4): 1424-1435.

Adachi S, Yoshikawa K, Yamanouchi U, Tanabata T, Sun J, Ookawa T, Yamamoto T, Sage R F, Hirasawa T, Yonemaru J. 2017. Fine mapping of carbon assimilation rate 8, a quantitative trait locus for flag leaf nitrogen content, stomatal conductance and photosynthesis in rice. Frontiers in Plant Science8, 60.

Ata-Ul-Karim S T, Zhu Y, Cao Q, Rehmani M I A, Cao W X, Tang L. 2017. Inseason assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. European Journal of Agronomy90, 139–151.

Bremner J M. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science55, 11–33.

Chen P, Du Q, Liu X M, Zhou L, Hussain S, Lei L, Song C, Wang X C, Liu W G, Yang F, Shu K, Liu J, Du J B, Yang W Y, Yong T W. 2017. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize–soybean relay strip intercropping system. PLoS ONE12, e0184503.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

DeBruin J, Messina C D, Munaro E, Thompson K, Conlon-Beckner C, Fallis L, Sevenich D M, Gupta R, Dhugga K S. 2013. N distribution in maize plant as a marker for grain yield and limits on its remobilization after flowering. Plant Breeding132, 500–505.

Dreccer M F, Van Oijen M, Schapeendonk A H C M, Pot C S, Rabbinge R. 2000. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany86, 821–831.

Drouet J M, Bonhomme R. 1999. Do variations in local leaf irradiance explain changes to leaf nitrogen within row maize canopies? Annals of Botany84, 61–69.

FAO. 2021. FAOSTAT database: Agriculture production. Food and Agriculture Organization of the United Nations, Rome.

Field C, Mooney H A. 1983. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia56, 348–355.

Foulkes M J, Murchie E H. 2011. Optimizing canopy physiology traits to improve the nutrient utilization efficiency of crops. In: The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. 1st ed. Wiley-Blackwell, USA.

Gastal F, Lemaire G. 2002. N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789–799.

Gu J F, Chen Y. Zhang H, Li Z K, Zhou Q, Yu C, Kong X S, Liu L J, Wang Z Q, Yang J C. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research206, 74–85.

Hikosaka K, Anten N P R, Borjigidai A, Kamiyama C, Sakai H, Hasegawa T, Oikawa S, Iio A, Watanabe M, Koike T, Nishina K, Ito A. 2016. A meta-analysis of leaf nitrogen distribution within plant canopies. Annals of Botany118, 239–247.

Hirose T, Werger M J A. 1987. Maximising daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in a canopy. Oecologia72, 520–526.

Holzworth D P, Huth N I, deVoil P G, Zurcher E J, Herrmann N I, McLean G, Chenu K, van Oosterom E J, Snow V, Murphy C, Moore A D, Brown H, Whish J P M, Verrall S, Fainges J, Bell L W, Peake A S, Poulton P L, Hochman Z, Thorburn P J, et al. 2014. APSIM-evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software62, 327–350.

Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, et al. 2020. How to increase maize production without extra nitrogen input. ResourcesConservation and Recycling, 160, 104913.

Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T. 2003. The DSSAT cropping system model. European Journal of Agronomy18, 235–265.

Josefina L, Ciampitti I A, Amas J I, Facundo C, Luque S F, Otegui M E. 2021. Breeding effects on canopy light attenuation in maize: A retrospective and prospective analysis. Journal of Experimental Botany, 73, 1301–1311.

Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. 2021. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security10, e312.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Liu W M, Yang Y S, Xu W J, Chen J L, Li S K. 2019. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Science59, 1236–1247.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Xu W J, Liu W M, Yang Y S, Li S K. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1Field Crops Research213, 221–230.

Liu G Z, Yang H S, Xie R Z, Yang Y S, Liu W M, Guo X X, Xue J, Ming B, Wang K R, Hou P, Li S K. 2021. Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China. Field Crops Research270, 108223.

Liu W M, Hou P, Liu G Z, Yang Y S, Guo X X, Ming B, Wang K R, Liu Y E, Li S K. 2020. Contribution of total dry matter and harvest index to maize grain yield - A multisource data analysis. Food and Energy Security9, e256.

Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields? PlantCell & Environment29, 315–330.

Meng Q F, Cui Z L, Yang H S, Zhang F S, Chen X P. 2017. Establishing high yielding maize system for sustainable intensification in China. Advances in Agronomy148, 86–109.

Messina C D, Jose R, Hammer G L, Carla G, Andres R, Fang Y, Oosterom E V, Borras L, Cooper M. 2022. Radiation use efficiency increased over a century of maize (Zea mays L.) breeding in the US corn belt. Journal of Experimental Botany16, 5505–5513.

Monsi M, Saeki T. 1953. Uber den Lichtfaktor in den planzengesellschften und seine bedeutung for die stroffproduction. The Journal of Japanese Botany14, 22–52.

Novoa R, Loomis R S. 1981. Nitrogen and plant production. Plant and Soil58, 177–204.

Ouyang W J, Yin X Y, Yang J C, Struik P C. 2021. Roles of canopy architecture and nitrogen distribution in the better performance of an aerobic than a lowland rice cultivar under water deficit. Field Crops Research271, 108257.

Pendleton J W, Smith G E, Winter S R, Johnston T J. 1968. Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agronomy Journal60, 422–424.

Shi D Y, Li Y H, Zhang J W, Liu P, Zhao B, Dong S T. 2016. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. Journal of Integrative Agriculture, 15, 2515–2528.

Shirawa T, Sinclair T R. 1993. Distribution of nitrogen among leaves in soybean canopies. Crop Science33, 804–808.

Swarbreck S M, Wang M, Wang Y, Kindred D, Sylvester-Bradley R, Shi W M, Varinderpal-Singh, Bentley A R, Griffiths H. 2019. A roadmap for lowering crop nitrogen requirement. Trends in Plant Science24, 892–904.

Walker B, Drewry D T, Slattery R A, Vanloocke A, Cho Y B, Ort D R. 2018. Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiology176, 1215–1232.

Wang Z J, Guo T C, Zhu Y J, Wang J H, Zhao M. 2003. Study on character of light radiation in canopy of super-high-yielding winter wheat. Acta Botanica Boreali-Occidentalia Sinica23, 1657–1662. (in Chinese)

Warren C R, Adams M A. 2001. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. PlantCell and Environment24, 597–609.

Wu L, Zhang W F, Chen X P, Cui Z L, Fan M S, Chen Q, Zhang F S. 2016. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland. Soils and Fertilizers Sciences in China4, 76–83.

Yao H S, Zhang Y L, Yi X P, Zuo W Q, Lei Z Y, Sui L L, Zhang W F. 2017. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research203, 192–200.

Zhang G Q, Shen D P, Xie R Z, Ming B, Hou P, Xue J, Li R F, Chen J L, Wang K R, Li S K. 2020. Optimizing planting density to improve nitrogen use of super high-yield maize. Agronomy Journal112, 4147–4158.

Zhang L, Liang Z Y, He X M, Meng Q F, Hu Y C, Schmidhalter U, Zhang W, Zou C Q, Chen X P. 2020. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Research249, 107754.

Zhang X, Bol R, Rahn C, Xiao G M, Meng F Q, Wu W L. 2017. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980– 2014 in Northern China. Science of the Total Environment596–597, 61–68.

Zhang Y M, Xue J, Zhai J, Zhang G Q, Zhang W X, Wang K R, Ming B, Hou P, Xie R Z, Liu C W, Li S K. 2021. Does nitrogen application rate affect the moisture content of corn grains? Journal of Integrative Agriculture20, 2627–2638.

Zhao J, Yang X G, Liu Z J, Pullens J W M, Chen J, Marek G W, Chen Y, Lv S, Sun S. S. 2020. Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China. Agricultural Water Management232, 106018.

Zhou Z X, Struik P C, Gu J F, van der Putten P E L, Wang Z Q, Yin X Y, Yang J C. 2023. Leaf-colour 668 modification affects canopy photosynthesis, dry-matter accumulation and yield traits in rice. Field Crops Research290, 108746.

Zhu X C, Zhang J, Zhang Z P, Deng A X, Zhang W J. 2016. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. European Journal of Agronomy, 75, 50–59.

[1] Zipeng Zhang, Siyuan Xing, Ao Qiu, Ning Zhang, Wenwen Wang, Changsong Qian, Jia’nan Zhang, Chuduan Wang, Qin Zhang, Xiangdong Ding. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1930-1943.
[2] Zhizhou Xu, Guichun Wu, Bo Wang, Baodian Guo, Cong Sheng, Yangyang Zhao, Bao Tang, Yancun Zhao, Fengquan Liu. Sigma factor 70 RpoD contributes to virulence by regulating cell motility, oxidative stress tolerance, and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1844-1859.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[5] Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long. Functional identification of Medicago truncatula MtRAV1 in regulating growth and development[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1944-1957.
[6] Xin Liu, Shuai Wang, Kang Zeng, Wenjing Li, Shenhao Wang, Sanwen Huang, Huasen Wang, Xueyong Yang. N-myristoyltransferase1 regulates biomass accumulation in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1754-1768.
[7] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[8] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[9] Lingzhai Meng, Yuntong Chen, Mengmeng Yu, Peng Liu, Xiaole Qi, Xiaoxiao Xue, Ru Guo, Tao Zhang, Mingxue Hu, Wenrui Fan, Ying Wang, Suyan Wang, Yanping Zhang, Yongzhen Liu, Yulu Duan, Hongyu Cui, Yulong Gao. Development of an improved reverse genetics system for avian metapneumovirus (aMPV): A novel vaccine vector protects against aMPV and infectious bursal disease virus[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1972-1986.
[10] Mohammad Nauman Khan, Yusheng Li, Yixue Mu, Haider Sultan, Amanullah Baloch, Ismail Din, Chengcheng Fu, Jiaqi Li, Zaid Khan, Sunjeet Kumar, Honghong Wu, Renato Grillo, Lixiao Nie. Recent advances in nano-enabled plant salt tolerance: Methods of application, risk assessment, opportunities and future prospects[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1611-1630.
[11] Xiaodong Gong, Dan Han, Lu Zhang, Guibo Yin, Junfang Yang, Hui Jia, Zhiyan Cao, Jingao Dong, Yuwei Liu, Shouqin Gu. Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1860-1874.
[12] Kai Wang, Longlong Sun, Mengdan Zhang, Shuting Chen, Guiying Xie, Shiheng An, Wenbo Chen, Xincheng Zhao. dsHaE93 shows a high potential for the pest control of Helicoverpa armigera by inhibiting larval-pupal metamorphosis and development of wing and ovary[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1916-1929.
[13] Dongdong Sun, Yutong Zhang, Song Cao, Xiaoqing Wang, Qian Cao, Sai Zhang, Yang Liu. A compound produced by Helicoverpa armigera male genitalia activates a conserved pheromone receptor[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1892-1904.
[14] Ameer Khan, Farah Kanwal, Muhammad Shahzad, Shama Naz, Sanaullah Jalil, Guoping Zhang.
Interactions of arsenic and phosphorus in their uptake and transportation in plants: Advances and prospective research on the mechanisms and approaches for alleviating arsenic stress
[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1631-1645.
[15] Lijun Ma, Juan Tang, Qinghe Zhang, Bingli Gao, Cheng Qu, Ran Wang, Chen Luo. Involvement of the cytochrome P450 genes CYP6DW3 and CYP4C64 in afidopyropen resistance in Bemisia tabaci Mediterranean (Q biotype)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1905-1915.
No Suggested Reading articles found!