Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1436-1447    DOI: 10.1016/j.jia.2024.03.033
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop

Dong An1, 2, 3, Xingfa Lai1, 2, Tianfu Han4, Jean Marie Vianney Nsigayehe1, 2, Guixin Li1, 2, Yuying Shen1, 2, 3#

1 State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China

2 National Field Scientific Observation and Research Station of Grassland Agro-ecosystems in Gansu Qingyang, Lanzhou University, Lanzhou 730020, China

3 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

4 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 
Cross-latitude introduction from low to high increased soybean dry matter production by delayed flowering.
Dry matter accumulation rate was the main factor determining soybean forage yield.
Varieties with a 12–16° latitude span had great forage potential in the northwestern Loess Plateau.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
大豆由于其强烈的光温敏性,在从低到高跨纬度引种种植时,生育期结构及生长表型会发生相应改变,从而可能表现出饲草属性。然而,由于大豆品种的生态类型多样,以及引种后大豆生长表型的不确定性,使得这种大豆饲用改良方式的运用受限。为探究跨纬度引种饲用改良的可行性,并为我国农区畜牧业提供优质饲草。本研究在2018-2019年期间,收集来自我国不同低纬度地区(22-31°N)的24个籽粒大豆品种,并引入纬度更高的黄土高原(39°N)种植,对其生长表型进行观测,并评估大豆品种的饲草生产性能。所有品种在跨纬度引种后都表现出了花期推迟的现象,其中一些品种的营养生长期甚至超过了它们在原产地的全生育期天数。干物质积累速率是引种大豆环境适应与否的关键特征,也是大豆饲草产量形成的基础。来自我国华南热带地区的品种表现出显著的产量优势,干物质产量在8.97-14.68 t ha-1,粗蛋白产量为1.44-2.51 t ha-1。来自该地区的品种华夏3号和桂夏7号在跨纬度环境中表现出最佳的生长适应性和生产力,干物质产量分别可达14.68和13.86 t ha-1,因此,华夏3号和桂夏7号可用于黄土高原区种植系统以供给高产优质的饲草。从低到高跨纬度引种种植是一种行之有效的大豆饲用改良与应用的策略。


Abstract  
Grain soybean (Glycine max (L.) Merr.) shows potential as a forage crop following its introduction from low to high latitudes due to in its growth phenotype.  However, the application of this approach is impeded by the diverse ecological types of soybean, their adaptability to the introduction, and the uncertainty surrounding the growth phenotype post-introduction.  This study introduced 24 grain soybean varieties from low-latitude regions (22–31°N) to the high-latitude northwestern Loess Plateau (39°N) between 2018 and 2019.  The growth phenotypes were observed, and their forage productivity potential was assessed.  All varieties displayed delayed flowering following cross-latitude introduction, with the vegetative growth phase of some varieties even exceeding their entire growth duration at their origin.  Rapid dry matter accumulation rates indicated growth adaptation performance and formed the basis for soybean forage yield.  Varieties from the tropical South China region exhibited significant yield advantages, with dry matter yields of 8.97–14.68 t ha–1 and crude protein yields of 1.44–2.51 t ha–1.  Varieties HX3 and GX7 from this region demonstrated optimal growth adaptability and productivity in the cross-latitude environment, achieving the highest dry matter yields of 14.68 and 13.86 t ha–1, respectively.  As a result, HX3 and GX7 are recommended for local farming systems to provide high-quality forage.  The cross-latitude introduction of soybean is proposed as a viable and efficient strategy for forage improvement and application.


Keywords:  forage soybean       latitude span        vegetative growth       introduction        variety screening  
Received: 14 August 2023   Accepted: 29 December 2023
Fund: 
This work was funded by the National Key R&D Program of China (2022YFD1300803) and the China Agriculture Research System of MOF and MARA (CARS-34).  
About author:  #Correspondence Yuying Shen, E-mail: yy.shen@lzu.edu.cn

Cite this article: 

Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen. 2025. Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop. Journal of Integrative Agriculture, 24(4): 1436-1447.

Acikgoz E, Sincik M, Karasu A, Tongel O, Wietgrefe G, Bilgili U, Oz M, Albayrak S, Turan Z M, Goksoy A T. 2009. Forage soybean production for seed in Mediterranean environments. Field Crops Research110, 213–218.

Alliprandini L F, Abatti C, Bertagnolli P F, Cavassim J E, Gabe H L, Kurek A, Steckling C. 2009. Understanding soybean maturity groups in Brazil: Environment, cultivar classification, and stability. Crop Science49, 801–808.

An D, Lai X F, Deng J Q, Han T F, Shen Y Y. 2019. Evaluation of feeding potential of soybean varieties origin from Southern China by the method of TOPSIS. Acta Agrestia Sinica27, 1710–1717. (in Chinese)

Anderson E J, Ali M L, Beavis W D, Chen P, Clemente T E, Diers B W, Graef G L, Grassini P, Hyten D L, McHale L K, Nelson R L, Parrott W A, Patil G B, Stupar R M, Tilmon K J. 2019. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. Advances in Plant Breeding Strategies: Legumes7, 431–516.

Arzani H, Zohdi M, Fish E, Amiri G Z, Nikkhah A, Wester D. 2004. Phenological effects on forage quality of five grass species. Journal of Range Management57, 624–629.

Asekova S, Shannon J G, Lee J D. 2014. The current status of forage soybean. Plant Breeding Biotechnology2, 334–341.

Desclaux D, Roumet P. 1996. Impact of drought stress on the phenology of two soybeans [Glycine max (L.) Merr.] cultivars. Field Crops Research46, 61–70.

Doss B, Pearson R, Rogers H T. 1974. Effect of soil water stress at various growth stages on soybean yield. Agronomy Journal66, 297–299.

FAOSTAT. 2020. ProdStat. Core production data base, electronic resource. [2024-2-26]. http://faostat.fao.org/

Fehr W, Caviness C, Burmood D, Pennington J. 1971. Stage of development descriptions for soybeans. Crop Science11, 929–931.

Gai J Y, Wang Y S, Zhang M C. 2001. Studies on the classification of maturity groups of soybeans in China. Acta Agronomica Sinica27, 286–292. (in Chinese)

Garner W W, Allard H A. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Agricultural Research18, 553–606.

Han X M, Hu C, Chen Y F, Qiao Y, Liu D H, Fan J, Li S L, Zhang Z. 2020. Crop yield stability and sustainability in a rice–wheat cropping system based on 34-year field experiment. European Journal of Agronomy113, 12965.

Hanway J J, Weber C R. 1971. Dry matter accumulation in eight soybean (Glycine max (L.) Merrill) varieties. Agronomy Journal63, 227–230.

Horowitz W. 1980. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, D.C.

Isobe K, Sasaki A, Fukuoka S, Hasegawa K, Suzuki D, Higo M. 2022. Effects of temperature and light conditions during the late growth stage on delayed stem senescence and cytokinin levels in the xylem exudate of soybean. Journal of Agronomy and Crop Science208, 721–732.

Jiang H, Sun S, Song W W, Wu C X, Wu T T, Hu S X, Han T F. 2018. Characterization of growth period dtructure andidentification of E Genes of MGIII soybean varieties from different geographic regions. Acta Agronomica Sinica44, 1448–1458. (in Chinese)

Koivisto J, Devine T, Lane G, Sawyer C, Brown H. 2003. Forage soybeans [Glycine max (L.) Merr.] in the United Kingdom: Test of new cultivars. Agronomie23, 287–291.

Kulkarni K P, Tayade R, Asekova S, Song J T, Shannon J G, Lee J D. 2018. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Frontiers in Plant Science9, 1314.

Kurasch A K, Hahn V, Leiser W L, Vollmann J, Schori A, Bétrix C A, Mayr B, Winkler J, Mechtler K, Aper J, Sudaric A, Pejic I, Sarcevic H, Jeanson P, Balko C, Signor M, Miceli F, Strijk P, Rietman H, Muresanu E, et al. 2017. Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. PlantCell & Environment40, 765–778.

Lemaire G, Belanger G. 2020. Allometries in plants as drivers of forage nutritive value: A review. Agriculture10, 5.

Li J C, Wang X B, Song W W, Huang X Y, Zhou J, Zeng H Y, Sun S, Jia H C, Li W B, Zhou X N, Li S Z, Chen P Y, Wu C X, Guo Y, Han T F, Qiu L J. 2017. Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS ONE12, e0172106.

Li Q Y, Jun Y, Liu W D, Zhou S M, Lei L I, Niu J S, Niu H B, Ying M A. 2012. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. Journal of Integrative Agriculture11, 405–415.

Liao Z Q, Zhang K B, Fan J L, Li Z J, Zhang F C, Wang X K, Wang H D, Cheng M H, Zou Y F. 2022. Ridge-furrow plastic mulching and dense planting with reduced nitrogen improve soil hydrothermal conditions, rainfed soybean yield and economic return in a semi-humid drought-prone region of China. Soil and Tillage Research217, 105291.

Luo Q. 2011. Temperature thresholds and crop production: A review. Climatic Change109, 583–598.

Maranna S, Nataraj V, Kumawat G, Chandra S, Rajesh V, Ramteke R, Khandekar N. 2021. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Scientific Reports11, 1–16.

Di Mauro G, Parra G, Santos D J, Enrico J M, Zuil S, Murgi, M, Zbinden F, Costanzi J, Arias N, Carrio A, Vissani C, Fuentes F, Salvagiotti F. 2022. Defining soybean maturity group options for contrasting weather scenarios in the American Southern Cone. Field Crops Research287, 108676.

Miladinovic J, Kurosaki H, Burton J W, Hrustic M, Miladinovic D. 2006. The adaptability of short season soybean genotypes to varying longitudinal regions. European Journal of Agronomy25, 243–249.

Nico M, Miralles D J, Kantolic A G. 2019. Natural post-flowering photoperiod and photoperiod sensitivity: Roles in yield-determining processes in soybean. Field Crops Research231, 141–152.

Nielsen D C. 2011. Forage soybean yield and quality response to water use. Field Crops Research, 124, 400–407.

Setiyono T D, Weiss A, Specht J, Bastidas A M, Cassman K G, Dobermann A. 2007. Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crops Research100, 257–271.

Sinebo W. 2005. Tread off between yield increase and yield stability in three decades of barley breeding in a tropical highland environment. Field Crops Research92, 35–52.

Song W W, Liu L P, Sun S, Wu T T, Zeng H Y, Tian S Y, Sun B C, Li W B, Liu L J, Wang S M, Xing H, Zhou X A, Nian H, Lu W C, Han X Z, Wang S Y, Chen W Y, Guo T, Song X Q, Tian Z Y, et al. 2023. Precise classification and regional delineation of maturity groups in soybean cultivars across China. European Journal of Agronomy151, 126982.

Stegman E C. 1988. Com crop curve comparisons for the central and northern plains of the U.S. Applied Engineering in Agriculture4, 226–233.

Suo R, Wang M, Liu X, Wang L, Chen L. 2019. Breeding and cultivation techniques of Glycine soja Sieb. Et Zucc cv. Hybrid F-S002. Soybean Science38, 168–170. (in Chinese)

Thompson S, Koebernick J, Carrell R C, Cole M, Dillard S L L. 2021. Evaluating soybean cultivars for forage yield and nutritive values. Journal of Animal Science99, 21–22.

Upadhyay A P, Ellis R H, Summerfield R J, Roberts E H, Qi A. 1994. Characterization of photothermal flowering responses in maturity isolines of soyabean [Glycine max (L.) Merrill] cv. Clark. Annals of Botany74, 87–96.

Wang X B, Liu Z X, Yang C Y, Lu W G, Zhang L F, Qian W, Wei S H, Yang C M, Wang H C, Wang R Z, Zhou R, Chen H Z, Chang R Z, Qiu L J. 2016. Stability of growth periods traits for soybean cultivars across multiple locations. Journal of Integrative Agriculture15, 963–972.

Wu T T, Li J Y, Wu C X, Shi S, Mao T T, Jiang B J, Hou W S, Han T F. 2015. Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. Journal of Integrative Agriculture14, 622–632.

Wu Y, Feng Y, Gong W, Ahmed S, Fan Y F, Wu X L, Yong T W, Liu W G, Shu K, Liu J, Du J B, Yang W Y. 2017. Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture16, 1331–1340.

Xu X, Zhang L X, Cao X N, Liu L F, Jiang B J, Zhang C L, Jia H C, Lyu X G, Su Y M, Cai Y P, Liu L P, Zhang S R, Chen F L, Wu C X, Liu B, Hou W S, Sun S, Lai J S, Han T F. 2021. Cotyledons facilitate the adaptation of early-maturing soybean varieties to high-latitude long-day environments. PlantCell & Environment44, 2551–2564.

Yan H L, Gu S S, Li S Z, Shen W L, Zhou X L, Yu H, Ma K, Zhao Y G, Wang Y C, Zheng H, Deng Y, Lu G X. 2022. Grass-legume mixtures enhance forage production via the bacterial community. AgricultureEcosystems & Environment338, 108087.

Yang Q, Lin G M, Lv H Y, Wang C H, Yang Y Q, Liao H. 2021. Environmental and genetic regulation of plant height in soybean. BMC Plant Biology21, 1–15.

Zhang H P, Flottmann S. 2016. Seed yield of canola (Brassica napus L.) is determined primarily by biomass in a high-yielding environment. Crop Pasture Science67, 369–380.

Zhang L X, Liu W, Tsegaw M, Xu X, QI Y P, Sapey E, Liu L P, Wu T T, Sun S, Han, T F. 2020. Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture19, 295–310.

Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H, Liu X, Fu Y F, Lin C T. 2008. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proceedings of the National Academy of Sciences of the United States of America105, 21028–21033.

Zhao J L, Wang X G, Zhuang J, Cong Y J, Lu Y, Guo M Z. 2021. Fine-crush straw returning enhances dry matter accumulation rate of maize seedlings in Northeast China. Agronomy11, 1144.

No related articles found!
No Suggested Reading articles found!