Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 3055-3072    DOI: 10.1016/j.jia.2024.11.006
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures

Xuehao Zhang1, Qiuling Zheng2, Yongjiang Hao1, Yingying Zhang1, Weijie Gu1, Zhihao Deng1, Penghui Zhou3, Yulin Fang1#, Keqin Chen1#, Kekun Zhang1#

1 Heyang Viti-Viniculture Station/Ningxia Helan Mountain’s East Foothill Wine Experimentand Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China

2 Yantai Academy of Agricultural Sciences, Yantai 264000, China

3 Shandong Technology Innovation Center of Wine Grape and Wine, COFCO Great Wall Wine (Penglai) Co., Ltd., Yantai 250000, China

 Highlights 
The morphological characteristics and physiological indicators suggested the order of drought tolerance was 420A>110R>CS>Fercal>188-08.
The functional analysis of differential metabolic pathways indicated the drought-tolerant cultivar 420A had higher antioxidant activity.
The transcriptional levels of VvAGL15, VvLBD41, and VvMYB86 might be used for assessing drought tolerance of grapes.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高温与干旱复合胁迫下植物的抗逆性评价和关键调控基因的筛选对植物抗逆性机制的研究具有重要意义。本研究对5个葡萄品种在高温条件下的抗旱性进行了评价,筛选关键基因,进一步探索抗旱机制。通过比较和分析葡萄品种对干旱胁迫响应相关的形态特征和生理指标,并用隶属函数法对其抗旱能力进行综合评价,发现抗旱性的顺序如下:420A>110R> Cabernet Sauvignon>Fercal>188-08。为了进一步分析抗旱性差异的机制,对抗旱品种420A、干旱敏感品种188-08和对照品种CS进行了转录组测序。差异代谢途径的功能分析表明,差异表达的基因主要集中在生物过程类别中,且420A具有更高的抗氧化活性。此外,还对5个葡萄品种的差异表达的转录因子进行了分析,发现VvAGL15VvLBD41VvMYB86等基因与耐旱性密切相关,表明其在耐旱性调控中的潜在作用和研究意义。



Abstract  

Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms.  In this study, the drought tolerance of five grape varieties was evaluated under high-temperature conditions to screen key genes for further exploration of resistance mechanisms.  By comparing and analysing the morphological characteristics and physiological indicators associated with the response of grapevines to drought stress and integrating them with the membership function to assess the strength of their drought tolerance, the order of drought tolerance was found to be as follows: 420A>110R>Cabernet Sauvignon (CS)>Fercal>188-08.  To further analyse the mechanism of differences in drought tolerance, transcriptomic sequencing was performed on the drought-tolerant cultivar 420A, the drought-sensitive cultivar 188-08 and the control cultivar CS.  The functional analysis of differential metabolic pathways indicated that the differentially expressed genes were enriched mainly in biological process category, that 420A had higher antioxidant activity.  Furthermore, differentially expressed transcription factors were analyzed in five grape varieties.  Genes like VvAGL15, VvLBD41, and VvMYB86 showed close associations with drought tolerance, indicating their potential role in regulating drought tolerance and research significance.

Keywords:  grape       rootstock       drought stress       drought tolerance       transcriptome   
Received: 16 April 2024   Online: 04 November 2024   Accepted: 27 September 2024
Fund: 

This study was supported by the Major Innovation Project of Shandong Province, China (2022CXGC010605), the National Natural Science Foundation of China (32172518 and 32002023), the National Key R&D Program of China (2023YFD2301103), and the Key R&D Projects in Ningxia Hui Autonomous Region, China (2022BBF02014).

About author:  Xuehao Zhang, E-mail: zhangxuehao@nwafu.edu.cn; #Correspondence Kekun Zhang, E-mail: zhangkekun1990@nwafu.edu.cn; Keqin Chen, E-mail: chenkeqin1985@nwafu.edu.cn; Yulin Fang, E-mail: fangyulin@nwafu.edu.cn

Cite this article: 

Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. 2025. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures. Journal of Integrative Agriculture, 24(8): 3055-3072.

Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science196, 67–76.

Bianchi D, Caramanico L, Grossi D, Brancadoro L, Lorenzis G D. 2020. How do novel M-rootstock (Vitis Spp.) genotypes cope with drought? Plants-basel9, 1385.

Bianchi D, Ricciardi V, Pozzoli C, Grossi D, Caramanico L, Pindo M, Stefani E, Cestaro A, Brancadoro L, Lorenzis G D. 2023. Physiological and transcriptomic evaluation of drought effect on own-rooted and grafted grapevine rootstock (1103P and 101-14MGt). Plants-basel12, 1080.

Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. 2013. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. International Journal of Molecular Sciences14, 3540–3555.

Cao Y, Luo Q X, Tian Y, Meng F J. 2017. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biology17, 53.

Casarotto G, Kaspary T E, Cutti L, Thomas A L, Neto J F B. 2019. Expression of genes related to soil flooding tolerance in soybeans. Acta Scientiarum-Agronomy41, e42709.

Chacón-Vozmediano J L, Martínez-Gascuea J, García-Navarro F J, Jiménez-Ballesta R. 2020. Effects of water stress on vegetative growth and ‘merlot’ grapevine yield in a semi-arid mediterranean climate. Horticulturae6, 95.

Cui X, Xue J N, Zhang B, Chen C, Zhang J. 2020. Physiological change and screening of differentially expressed genes of wild Chinese Vitis yeshanensis and American Vitis riparia in response to drought stress. Scientia Horticulturae266, 109–140.

Degu A, Hochberg U, Wong D C J, Alberti G, Fait A. 2019. Swift metabolite changes and leaf shedding are milestones in the acclimation process of grapevine under prolonged water stress. BMC Plant Biology19, 69.

Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M. 2006. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum127, 343–352.

Fort K, Fraga J, Grossi D, Walker M A. 2017. Early measures of drought tolerance in four grape rootstocks. Journal of the American Society for Horticultural Science142, 36–46.

Gambetta G A, Herrera J C, Dayer S, Feng Q, Hochberg U, Castellarin S D. 2020. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany71, 4658–4676.

Gambetta G A, Kurtural S K. 2021. Global warming and wine quality: Are we close to the tipping point? OENO One55, 353–361.

Gao S, Guo R, Liu Z, Hu Y, Guo J, Sun M, Shi L. 2023. Integration of the transcriptome and metabolome reveals the mechanism of resistance to low phosphorus in wild soybean seedling leaves. Plant Physiology and Biochemistry194, 406–417.

Gaxiola R A., Li J S, Undurraga S, Dang L M, Allen G J, Alper S L, Fink G R. 2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences of the United States of America98, 11444–11449.

Guo Y Y, Tian S S, Liu S S, Wang W Q, Sui N. 2018. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica56, 861–872.

Haider M S, Zhang C, Kurjogi M M, Pervaiz T, Zheng T, Zhang C, Lide C, Shangguan L F, Fang J G. 2017. Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-seq analysis. Scientific Reports7, 13134.

Hochberg U, Degu A, Fait A, Rachmilevitch S. 2013. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiologia Plantarum147, 443–452.

Hou H M, Jia H, Yan Q, Wang X P. 2018. Overexpression of a SBP-Box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance. International Journal of Molecular Sciences19, 940.

Hou J A, Zhao F A, Yang X J, Li W, Xie D Y, Tang Z J, Lv S P, Nie L H, Sun Y, Wang M M, Zhu Y J, Bo X P, Zhang Q W, Zhao Y M, Fang W P. 2021. Lignin synthesis related genes with potential significance in the response of upland cotton to Fusarium wilt identified by transcriptome profiling. Tropical Plant Biology14, 106–119.

Ibrahime M, Kibar U, Kazan K, Ozmen C Y, Mutaf F, Asci S D, Aydemir B C, Ergul A. 2019. Genome-wide identification of the LEA protein gene family in grapevine (Vitis vinifera L.). Tree Genetics & Genomes15, 55.

Ju Y L, Min Z, Yue X F, Zhang Y L, Zhang J X, Zhang Z Q, Fang Y L. 2020. Overexpression of grapevine VvNAC08 enhances drought tolerance in transgenic ArabidopsisPlant Physiology and Biochemistry151, 214–222.

Ju Y L, Min Z, Zhang Y, Zhang K K, Fang Y L. 2021. Transcriptome profiling provide new insights into the molecular mechanism of grapevine response to heat, drought, and combined stress. Scientia Horticulturae286, 110076.

Ju Y L, Yue X F, Zhao X F, Zhao H, Fang Y L. 2018. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress. Plant Physiology and Biochemistry130, 501–510.

Kazuo N, Yamaguchi-Shinozaki K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports32, 959–970.

Khayatnezhad M. 2012. The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). African Journal of Microbiology Research6, 2844–2848.

Kovács L, Damkjær J, Kereïche S, Ilioaia C, Ruban A V, Boekema E J, Jansson S, Horton P. 2006. Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell18, 3106–3120.

Li L, He Y, Ge H, Liu Y, Chen H. 2021. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Science302, 110696.

Li M M, Yin Y G, Jia N, Han B, Sun Y, Liu C J, Zhao S J, Guo Y, Guo Z J. 2021. Anatomical physiological and biochemical processes involved in grapevine rootstock drought tolerance. Vitis60, 53–61.

Liu C H, Li C, Liang D, Ma F W, Wang S C, Wang P, Wang R C. 2013. Aquaporin expression in response to water-deficit stress in two Malus species: Relationship with physiological status and drought tolerance. Plant Growth Regulation70, 187–197.

Liu Y, Zhang M, Meng Z, Wang B, Chen M. 2020. Research progress on the roles of cytokinin in plant response to stress. International Journal of Molecular Sciences, 21, 2574.

Maréchaux I, Bartlett M K, Iribar A, Sack L, Chave J M. 2017. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters13, 20160819.

Massimiliano C, Alessandro V, Elie M, Nicola V, Franco M, Andrea P, Andrea T, Michela D A, Erika F, Simone N A. 2015. Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany66, 5739–5752.

Nowak K, Morończyk J, Wójcik A, Gaj M D. 2020. AGL15 controls the embryogenic reprogramming of somatic cells in Arabidopsis through the histone acetylation-mediated repression of the miRNA biogenesis genes. International Journal of Molecular Sciences21, 6733.

Nxele X, Klein A, Ndimba B K. 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany108, 261–266.

Ouyang W J, Struik P C, Yin X Y, Yang J C. 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany68, 5191–5205.

Padgettjohnson M, Williams L E, Walker M A. 2003. Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and nonirrigated conditions in California. Thin Solid Films272, 137–142.

Peccoux A, Loveys B, Zhu J, Gambetta G A, Delrot S, Vivin P, Schultz H R, Ollat N, Dai Z. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology7, 1026–1040.

Pinheiro C, Chaves M M. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany62, 869–882.

Raza A, Razzaq A, Mehmood S, Zou X, Zhang X, Lv Y, Xu J. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants8, 34.

Sadeghnezhad E, Sharifi M, Zare-Maivan H. 2016. Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells. Planta244, 75–85.

Serra I, Strever A, Myburgh P A, Deloire A. 2014. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape & Wine Research20, 1–14.

Sharma P, Dubey R S. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation46, 209–221.

Tan J W, Shinde H, Tesfamicael K, Hu Y K, Fruzangohar M, Tricker P, Baumann U, Edwards E J, López C R M. 2023. Global transcriptome and gene co-expression network analyses reveal regulatory and non-additive effects of drought and heat stress in grapevine. Frontiers in Plant Science14, 1096225.

Tezara W, Mitchell V J. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401, 914–917.

Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports5, 12449.

Tu M X, Wang X H, Huang L, Guo R R, Zhang H J, Cai J S, Wang X P. 2016. Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses. Plant Cell Tissue and Organ Culture125, 537–551.

Wang P P, Wang Z K, Guan L, Muhammad S H, Maazullah N,Yuan Y B, Liu G S, Leng X P. 2022. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine. Journal of Integrative Agriculture21, 91–112.

Xu S D, Geng X M, Mao L F Yi Y, Gong J Y Xu X R. 2022. Transcriptome analysis and identification of the genes associated with the heat stress response in four Rhododendron species. Scientia Horticulturae303, 111176.

Xu Y, Burgess P, Zhang X Z, Huang B R. 2016. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stoloniferaJournal of Experimental Botany67, 1979–1992.

Zehrmann A, Verbitskiy D, Merwe V D J A, Brennicke A, Takenaka M. 2009. A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thalianaPlant Cell21, 558–567.

Zhang K K, Chen L, Wei M Y, Qiao H R, Zhang S H, Li Z H, Fang Y L, Chen K Q. 2021. Metabolomic profile combined with transcriptomic analysis reveals the value of UV-C in improving the utilization of waste grape berries. Food Chemistry363, 130288.

Zhang K K, Du M R, Zhang H Y, Zhang X Q, Cao S, Wang X, Wang W R, Guan X Q, Zhou P H, Li J, Jiang W G, Tang M L, Zheng Q L, Cao M M, Zhou Y F, Chen K Q, Liu Z J, Fang Y L. 2023. The haplotype-resolved T2T genome of teinturiercultivar Yan73 reveals the genetic basis of anthocyanin biosynthesis in grapes. Horticulture Research10, uhad205.

Zhang Y, Cao G, Qu L J, Gu H. 2009. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15Journal of Genetics and Genomics36, 99–107.

Zhang Y, Li Z, Ma B, Hou Q, Wan X. 2020. Phylogeny and functions of LOB domain proteins in plants. International Journal of Molecular Sciences21, 2278.

Zhou Y, Ge L, Hu L, Yang Y, Liu S. 2018. A cucumber AGAMOUS-LIKE 15 (AGL15) MADS-Box gene mediates abnormal leaf morphology in ArabidopsisAgronomy8, 265.

[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] Lifang Yuan, Hang Jiang, Qibao Liu, Xilong Jiang, Yanfeng Wei, Xiangtian Yin, Tinggang Li. Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2686-2703.
[3] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[4] Xinyi Mao, Xuan Zhao, Zhi Luo, Ao He, Meng Yang, Mengjun Liu, Jin Zhao, Ping Liu. Transcriptome-based analysis of lignin accumulation in the regulation of fruit stone development and endocarp hardening in Chinese jujube[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2217-2228.
[5] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[6] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[7] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[8] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[9] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[10] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[11] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[12] Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou, Zhongxia Wu. Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body[J]. >Journal of Integrative Agriculture, 2025, 24(2): 668-679.
[13] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[14] Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 147-160.
[15] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
No Suggested Reading articles found!