Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 3073-3086    DOI: 10.1016/j.jia.2024.12.033
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The miR164a targets CsNAC1 to negatively regulate the cold tolerance of tea plants (Camellia sinensis)

Siya Li, Lu Cao, Ziwen Zhou, Yaohua Cheng, Xianchen Zhang#, Yeyun Li#

State Key Laboratory of Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China

 Highlights 
The expression level of CsMIR164a was significantly reduced under cold stress and significantly and negatively correlated with that of CsNAC1.
CsMIR164a negatively regulated cold tolerance in tea plants by targeting and cleaving CsNAC1, which in turn modulated the expression of CsCBFs.
Overexpression of CsNAC1 enhanced cold tolerance in transgenic Arabidopsis, while silencing CsNAC1 or overexpressing CsMIR164a increased cold sensitivity.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

冷胁迫对茶产量的减少和品质的降低广泛影响。miR164家族及其靶基因NAC转录因子已被确定为植物应对冷胁迫的关键调节因子之一。然而,人们对miR164CsNAC在茶树抗寒中的作用知之甚少。研究发现csn-miR164a的表达量在冷胁迫下显著降低,且与CsNAC1的表达量呈显著负相关。5 ' RACEGUS组织定位实验清晰地表明csn-miR164a特异性切割CsNAC1茶树叶片中csn- miR164a沉默处理后,CsNAC1CsCBFs的表达水平得以提高,并表现出更强的耐寒性;同时CsNAC1过表达也通过提高AtCBFs的表达水平增强了转基因拟南芥的耐寒性。相反,拟南芥中csn-miR164a异源过表达减少AtNACsAtCBFs的表达水平,进而降低了耐寒性。此外,茶树叶片中CsNAC1的沉默降低CsCBFs的表达水平,导致其表现出显著的冷敏感性。综上所述,研究表明miR164a-CsNAC1模块可能通过CsCBFs依赖途径负调控茶树耐寒性。



Abstract  

Cold stress widely impairs the quality and yield of tea plants.  The miR164 family and its target NAC transcription factor have been identified as crucial regulators in response to cold stress.  However, the role of miR164 and CsNAC in cold tolerance in tea plants was little understood.  In our study, the expression level of CsMIR164a was significantly reduced under cold stress and significantly and negatively correlated with that of CsNAC1.  5´ RACE and GUS histochemical assays showed that CsNAC1 was cleaved by CsMIR164a.  The CsMIR164a-silenced tea leaves promoted the expression levels of CsNAC1 and CsCBFs and exhibited greater cold tolerance.  Also, the overexpression of CsNAC1 enhanced cold tolerance in transgenic Arabidopsis plants by promoting the expression levels of AtCBFs.  In contrast, the heterologous overexpression of CsMIR164a in Arabidopsis decreased the expression level of AtNACs and AtCBFs and thus impaired cold tolerance.  Additionally, silencing of CsNAC1 impaired the expression levels of CsCBFs, resulting in greater cold sensitivity in tea leaves.  Our present study demonstrated that the miR164a-CsNAC1 module may play a negative role in the cold tolerance of tea plants via the CsCBF-dependent pathway.


Keywords:  tea plants       cold stress        miRNAs        NAC transcription factor        functional verification  
Received: 12 April 2024   Online: 30 December 2024   Accepted: 01 February 2024
Fund: This work was supported by the Anhui University Collaborative Innovation Project, China (GXXT-2020-080), the Scientific Research Project of Anhui Provincial Colleges and Universities, China (2023AH040136).
About author:  Siya Li, E-mail: 1106394215@qq.com; #Correspondence Xianchen Zhang, E-mail: zhangxianchen360@163.com; Yeyun Li, E-mail: lyy@ahau.edu.cn

Cite this article: 

Siya Li, Lu Cao, Ziwen Zhou, Yaohua Cheng, Xianchen Zhang, Yeyun Li. 2025. The miR164a targets CsNAC1 to negatively regulate the cold tolerance of tea plants (Camellia sinensis). Journal of Integrative Agriculture, 24(8): 3073-3086.

Akdogan G, Tufekci E D, Uranbey S, Unver T. 2016. miRNA-based drought regulation in wheat. Functional & Integrative Genomics16, 221–233.

Albertos P, Tatematsu K, Mateos I, Sánchez-Vicente I, Fernández-Arbaizar A, Nakabayashi K, Nambara E, Godoy M, Franco J M, Solano R, Gerna D, Roach T, Stöggl W, Kranner I, Perea-Resa C, Salinas J, Lorenzo O. 2021. Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Reports35, 109263.

Alshareef N O, Otterbach S L, Allu A D, Woo Y H, De Werk T, Kamranfar I, Mueller-Roeber B, Tester M, Balazadeh S, Schmöckel S M. 2022. NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Scientific Reports12, 11264.

An J P, Li R, Qu F J, You C X, Wang X F, Hao Y J. 2018. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. Journal of Plant Physiology221, 74–80.

Bian Z, Gao H, Wang C. 2020. NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops. International Journal of Molecular Sciences22, 81.

Cao H, Wang L, Nawaz M A, Niu M, Sun J, Xie J, Kong Q, Huang Y, Cheng F, Bie Z. 2017. Ectopic expression of Pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in ArabidopsisFrontiers in Plant Science8, 2052.

Chang N, Zhou Z, Li Y, Zhang X. 2022. Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H+-ATPase activity. Plant Physiology and Biochemistry170, 225–233.

Chen Q J, Zhang L P, Song S R, Wang L, Xu W P, Zhang C X, Wang S P, Liu H F, Ma C. 2022. vvi-miPEP172b and vvi-miPEP3635b increase cold tolerance of grapevine by regulating the corresponding MIRNA genes. Plant Science325, 111450.

Chen Y, Yu X. 2023. Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat. Plant Cell Reports42, 1433–1452.

Chi Q, Du L Y, Ma W, Niu R Y, Wu B W, Guo L J, Ma M, Liu X L, Zhao H X. 2022. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance of wheat seedlings. Journal of Integrative Agriculture22, 981–998.

Diao P, Chen C, Zhang Y, Meng Q, Lv W, Ma N. 2020. The role of NAC transcription factor in plant cold response. Plant Signaling & Behavior15, 1785668.

Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. 2009. Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany103, 29–38.

Dong Y, Tang M, Huang Z, Song J, Xu J, Ahammed G J, Yu J, Zhou Y. 2022. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. Plant Journal111, 440–456.

Fang Y, Xie K, Xiong L. 2014. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany65, 2119–2135.

Feng C, Zhang X, Du B, Xiao Y, Wang Y, Sun Y, Zhou X, Wang C, Liu Y, Li T H. 2023. MicroRNA156ab regulates apple plant growth and drought tolerance by targeting transcription factor MsSPL13. Plant Physiology192, 1836–1857.

Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X. 2020. PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Research48, 1114–1121.

Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant Journal68, 302–313.

Han K, Zhao Y, Sun Y, Li Y. 2023. NACs, generalist in plant life. Plant Biotechnology Journal21, 2433–2457.

Hernandez Y, Goswami K, Sanan-Mishra N. 2020. Stress induced dynamic adjustment of conserved miR164:NAC module. Plant Environment Interactions1, 134–151.

Hou X M, Zhang H F, Liu S Y, Wang X K, Zhang Y M, Meng Y C, Luo D, Chen R G. 2020. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Science291, 110346.

Hu P, Zhang K, Yang C. 2019. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiology179, 700–717.

Huang J C, Piater L A, Dubery I A. 2012. The NAC transcription factor gene ANAC072 is differentially expressed in Arabidopsis thaliana in response to microbe-associated molecular pattern (MAMP) molecules. Physiological and Molecular Plant Pathology80, 19–27.

Huang S Q, Xiang A L, Che L L, Chen S, Li H, Song J B, Yang Z M. 2010. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal8, 887–899.

Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, Wu A, Wei C. 2019. Identification of regulatory networks of microRNAs and their targets in response to colletotrichum gloeosporioides in tea plant (Camellia sinensis L.). Frontiers in Plant Science10, 1096.

Jia X, Zeng Z, Lyu Y, Zhao S. 2022. Drought-responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in Arabidopsis. International Journal of Molecular Sciences23, 1755.

Jin C, Li K Q, Xu X Y, Zhang H P, Chen H X, Chen Y H, Hao J, Wang Y, Huang X S, Zhang S L. 2017. A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Frontiers in Plant Science8, 1049.

Ju Y L, Yue X F, Min Z, Wang X H, Fang Y L, Zhang J X. 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic ArabidopsisPlant Physiology and Biochemistry146, 98–111.

Kong L, Zhu X X, Wang Y W, Xie X F, Jiang C J, Li Y Y. 2018. Identification and expression analysis of tea plant (Camellia sinesis) miR164a and its target gene. Journal of Tea Science38, 547–558. (in Chinese)

Kong X M, Zhou Q, Zhou X, Wei B D, Ji S J. 2020. Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper. Journal of Experimental Botany71, 1078–1091.

Lee M H, Jeon H S, Kim H G, Park O K. 2017. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164. New Phytologist214, 343–360.

Li J, Lai T, Song H, Xu X. 2017. MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature. Russian Journal of Plant Physiology64, 251–259.

Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist234, 902–917.

Liu G F, Liu J J, He Z R, Wang F M, Yang H, Yan Y F, Gao M J, Gruber M Y, Wan X C, Wei S. 2018. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensisPlant Cell & Environment41, 176–186.

Liu L, Chen H, Zhu J, Tao L, Wei C. 2022. miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant (Camellia sinensis). Tree Physiology42, 1450–1462.

Liu Y, Sun J, Wu Y. 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. Journal of Plant Research129, 955–962.

Luo J, Huang S, Chang Y, Li H, Guo G. 2023. Physiological and transcriptomic analyses reveal tea plant (Camellia sinensis L.) adapts to extreme freezing stress during winter by regulating cell wall structure. BMC Genomics24, 558.

Ma L, Zhao Y, Chen M, Li Y, Shen Z, Cao Y, Wu D, Yu M, Grierson D, Shi Y, Chen K. 2023. The microRNA ppe-miR393 mediates auxin-induced peach fruit softening by promoting ethylene production. Plant Physiology192, 1638–1655.

Ma W, Kang X, Liu P, She K, Zhang Y, Lin X, Li B, Chen Z. 2022. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensisHorticulture Research9, 46.

Mao H, Li S, Wang Z, Cheng X, Li F, Mei F, Chen N, Kang Z. 2020. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal18, 1078–1092.

Mei C, Yang J, Mei Q, Jia D, Yan P, Feng B, Mamat A, Gong X, Guan Q, Mao K, Wang J, Ma F. 2023. MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways. Plant Biotechnology Journal21, 2057–2073.

Otte K A, Nolte V, Mallard F, Schlötterer C. 2021. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biology22, 211.

Peng H, Phung J, Stowe E C, Dhingra A, Neff M M. 2022. The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in Arabidopsis thaliana seedlings. FEBS Letters596, 1586–1599.

Peng J, Li N, Di T, Ding C, Li X, Wu Y, Hao X, Wang Y, Yang Y, Wang X, Wang L. 2022. The interaction of CsWRKY4 and CsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant (Camellia sinensis). Environmental and Experimental Botany199, 104892.

Pi X T, Chang N, Zhou Z W, Li Y Y, Zhang X C. 2023. CsFAD2 and CsFAD5 are key genes for C18:2 fatty acid pathway-mediated cold tolerance in tea (Camellia sinensis). Environmental and Experimental Botany210, 105317.

Shah S T, Pang C, Fan S, Song M, Arain S, Yu S. 2013. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene531, 220–234.

Shan W, Kuang J F, Lu W J, Chen J Y. 2014. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1Plant Cell & Environment37, 2116–2127.

Sharma R, Upadhyay S, Bhattacharya S, Singh A. 2021. Abiotic stress-responsive miRNA and transcription factor-mediated gene regulatory network in Oryza sativa: Construction and structural measure study. Frontiers in Genetics12, 618089.

Shen X, He J, Ping Y, Guo J, Hou N, Cao F, Li X, Geng D, Wang S, Chen P, Qin G, Ma F, Guan Q. 2022. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiology188, 1686–1708.

Shim J S, Oh N, Chung P J, Kim Y S, Choi Y D, Kim J K. 2018. Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science9, 310.

Singh P, Dutta P, Chakrabarty D. 2021. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Reports40, 1617–1630.

Song S S, Ran W X, Gao L H, Wang Y C, Lv W Y, Tao Y, Chen L, Li C F. 2024. A functional study reveals CsNAC086 regulated the biosynthesis of flavonols in Camellia sinensisPlanta259, 147.

Strzyz P. 2021. microRNA communication in plants. Nature Reviews Molecular Cell Biology22, 775.

Sukiran N L, Ma J C, Ma H, Su Z. 2019. ANAC019 is required for recovery of reproductive development under drought stress in ArabidopsisPlant Molecular Biology99, 161–174.

Tang Y, Lu L, Huang X, Zhao D, Tao J. 2023. The herbaceous peony transcription factor WRKY41a promotes secondary cell wall thickening to enhance stem strength. Plant Physiology191, 428–445.

Wan X, Wang Z, Duan W, Huang T, Song H, Xu X. 2023. Knockdown of Sly-miR164a enhanced plant salt tolerance and improved preharvest and postharvest fruit nutrition of tomato. International Journal of Molecular Sciences24, 4639.

Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z. 2016. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Reports35, 1371–1383.

Wang M, Ren L T, Wei X Y, Ling Y M, Gu H T, Wang S S, Ma X F, Kong G C. 2022. NAC transcription factor TwNAC01 positively regulates drought stress responses in Arabidopsis and Triticale. Frontiers in Plant Science13, 877016.

Wang P, Yang Y, Shi H, Wang Y, Ren F. 2019. Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine. BMC Genomics20, 740.

Wang Q, Hu F, Yao Z, Zhao X, Chu G, Ye J. 2023. Comprehensive genomic characterisation of the NAC transcription factor family and its response to drought stress in Eucommia ulmoidesPeerJ11, e16298.

Wang Y, Jiang C J, Li Y Y, Wei C L, Deng W W. 2012. CsICE1 and CsCBF1: Two transcription factors involved in cold responses in Camellia sinensisPlant Cell Reports31, 27–34.

Wang Y, Samarina L, Mallano A I, Tong W, Xia E. 2023. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. Frontiers in Plant Science14, 1145609.

Wen L, Liu T, Deng Z, Zhang Z, Wang Q, Wang W, Li W, Guo Y. 2022. Characterization of NAC transcription factor NtNAC028 as a regulator of leaf senescence and stress responses. Frontiers in Plant Science13, 941026.

Xia L, Sun S, Han B, Yang X. 2023. NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants. Plant Physiology and Biochemistry195, 114–123.

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. 2023. Tree visualization by one table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research51, W587–W592.

Yang X, Kim M Y, Ha J, Lee S H. 2019. Overexpression of the soybean NAC gene GmNAC109 increases lateral Root formation and abiotic stress tolerance in transgenic Arabidopsis plants. Frontiers in Plant Science10, 1036.

Yong Y, Zhang Y, Lyu Y. 2019. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences20, 3225.

Zhang X, Cao X, Xia Y, Ban Q, Cao L, Li S, Li Y. 2022a. CsCBF5 depletion impairs cold tolerance in tea plants. Plant Science325, 111463.

Zhang X, Li L, Lang Z, Li D, He Y, Zhao Y, Tao H, Wei J, Li Q, Hong G. 2022b. Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Frontiers in Plant Science13, 1065261.

Zhang X, Wang W, Wang M, Zhang H Y, Liu J H. 2016. The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis. Plant & Cell Physiology57, 1865–1878.

Zhang X, Xia Y, Li S, Cao L, Zhou Z, Chang N, Li Y. 2023. The arginine decarboxylase gene CsADC1, associated with the polyamine pathway, plays an important role in tea cold tolerance. Environmental and Experimental Botany214, 105473.

Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X. 2014. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biology14, 271.

Zhao M, Jin J, Wang J, Gao T, Luo Y, Jing T, Hu Y, Pan Y, Lu M, Schwab W, Song C. 2022. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. Plant Journal109, 1489–1506.

Zhao M, Wang L, Wang J, Jin J, Zhang N, Lei L, Gao T, Jing T, Zhang S, Wu Y, Wu B, Hu Y, Wan X, Schwab W, Song C. 2020. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of Integrative Plant Biology62, 1461–1468.

Zhao X, Li P, Zuo H, Peng A, Lin J, Li P, Wang K, Tang Q, Tadege M, Liu Z, Zhao J. 2023. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). Plant Journal115, 1051–1070.

Zheng G, Wei W, Li Y, Kan L, Wang F, Zhang X, Li F, Liu Z, Kang C. 2019. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist224, 480–492.

[1] Na Chang, Xiaotian Pi, Ziwen Zhou, Yeyun Li, Xianchen Zhang. Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3737-3750.
[2] GUO Ya-fei, LI Dai-li, QIU Hai-ji, ZHANG Xiao-liang, LIU Lin, ZHAO Jing-jing, JIANG De-yuan. Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3364-3379.
No Suggested Reading articles found!