Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2371-2388    DOI: 10.1016/j.jia.2024.10.002
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon

Yulu Chen1, Li Huang1#, Jusheng Gao2#, Zhen Zhou1, Muhammad Mehran1, Mingjian Geng1, Yangbo He1, Huimin Zhang2, Jing Huang2

1 Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China

2 Hengyang Red Soil Experimental Station, Chinese Academy of Agricultural Sciences, Hengyang 421001, China

 Highlights 
Aggregate stability is higher in high-clay Udic Ferrisols than in low-clay Alfisols.
Kaolinite, Fed, and aromatic-C drive clay formation, raising aggregate stability.
36-year milk etch (MV) incorporation promotes mineral conversion, and increases Fed and aromatic-C.
Long-term MV incorporation raises aggregate stability by altering mineralogy and SOC composition.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤团聚体受土壤矿物与有机组分之间复杂相互作用调节,对土壤可持续性和作物生产力有深远影响。为探讨绿肥施用后土壤矿物和有机组分的变化及其对土壤团聚体的影响,本研究基于5年和36年的田间试验,采集了稻--冬休(CK)和稻--紫云英(MV)处理的淋溶土和铁铝土表层(0-20 cm)土壤样品,分析土壤团聚体稳定性、土壤矿物、有机碳组分及团聚体微观结构特征。结果显示,黏粒含量高的铁铝土比黏粒含量低的淋溶土具有更高的团聚体稳定性。淋溶土团聚体层状硅酸盐矿物主要为伊利石和蛭石,而铁铝土团聚体中的层状硅酸盐矿物以高岭石为主,并含有大量游离铁。此外,铁铝土黏粒组分中的芳香族碳丰度显著高于淋溶土。经过36年紫云英还田,铁铝土大团聚体的稳定性显著提高了9.57%-13.37%。紫云英还田还促进了蛭石向高岭石的转化,并显著提高了铁铝土中黏粒、游离铁和芳香族碳的含量。背散射电子(BSE-扫描电镜(SEM-能谱(EDS)分析结果表明,铁铝土团聚体结构紧密,铁氧化物与高岭石共定位。此外,偏最小二乘路径模型(PLS-PM)表明,黏粒含量对大团聚体稳定性具有直接的正向效应,而高岭石和游离铁通过直接影响芳香族碳,间接调节了黏粒的形成。综上所述,长期紫云英还田通过影响土壤矿物转化,生成更多的高岭石和铁氧化物,并通过保留芳香族碳促进黏粒的形成,最终提升团聚体稳定性。



Abstract  

Soil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complex interactions between minerals and organics.  This study aimed to elucidate the alterations in mineralogy and soil organic carbon (SOC) following long-term green manure incorporation and the effect on soil aggregates.  Based on 5- and 36-year field experiments, surface soil samples (0–20 cm) were collected from Alfisol and Ferrisol soils subjected to rice–rice–winter fallow (CK) and rice–rice–Chinese milk vetch (MV) treatments to investigate aggregate stability, mineralogy, SOC composition, and soil microstructural characteristics.  The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol.  The phyllosilicates in Alfisol primarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides (Fed) were dominated by kaolinite.  Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction in Alfisol.  The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability (9.57–13.37%), and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol.  Backscattered electron (BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Fe oxides and kaolinite.  Moreover, the partial least path model (PLS-PM) revealed that clay content directly improved macroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels.  Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.

Keywords:  aggregate stability       clay       milk vetch       mineralogy       soil organic carbon  
Received: 09 June 2024   Online: 11 October 2024   Accepted: 05 August 2024
Fund: This research was supported by the National Natural Science Foundation of China (41977020) and the China Agriculture Research System of MOF and MARA (CARS-22).
About author:  Yulu Chen, Mobile: +86-18703617312, E-mail: yuluchenlz@163.com; #Correspondence Li Huang, Mobile: +86-13036165770, E-mail: daisyh@mail.hzau.edu.cn; Jusheng Gao, E-mail: gaojusheng@caas.cn

Cite this article: 

Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang. 2025. Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon. Journal of Integrative Agriculture, 24(6): 2371-2388.

Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize–green manure intercropping in Northwest China. Journal of Environmental Management321, 115859.

Amézketa E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture14, 83–151.

Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock aggregation and system productivity in the foothills of Eastern Himalaya (India). Soil & Tillage Research218, 105318.

Arab P B, Araújo T P, Pejon O J. 2015. Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science114, 133–140.

Arnarson T S, Keil R G. 2000. Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry71, 309–320.

Bai J S, Zhang S Q, Huang S M, Peng X X, Zhao S C, Qiu S J, Ping H E, Zhou W. 2023. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study. Journal of Integrative Agriculture22, 3517–3534.

Baker L L, Nickerson R D, Strawn D G. 2014. XAFS study of Fe-substituted Allophane and Imogolite. Clays and Clay Minerals62, 20–34.

Balan E, Fritsch E, Juillot F, Allard T, Petit S. 2021. Local mode interpretation of the OH overtone spectrum of 1:1 phyllosilicates. European Journal of Mineralogy33, 209–220.

Balbino L C, Bruand A, Cousin I, Brossard M, Quétin P, Grimaldi M. 2004. Change in the hydraulic properties of a Brazilian clay Ferralsol on clearing for pasture. Geoderma120, 297–307.

Banwart T, Steve A. 2011. Save our soils. Nature474, 151–152.

Barre P, Fernandez-Ugalde O, Virto I, Velde B, Chenu C. 2014. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma235, 382–395.

Basset C, Najm M A, Ghezzehei T, Hao X X, Daccache A. 2023. How does soil structure affect water infiltration? A meta-data systematic review. Soil & Tillage Research226, 105577.

Bhattacharyya R, Prakash V, Kundu S, Srivastva A K, Gupta H S, Mitra S. 2010. Long-term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalaya. Nutrient Cycling in Agroecosystems86, 1–16.

Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science47, 425–437.

Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma124, 3–22.

Byrne J M, Klueglein N, Pearce C, Rosso M K, Appel E, Kappler A. 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science347, 1473–1476.

Cai S S, Sun L, Wang W, Li Y, Ding J L, Jin L, Li Y M, Zhang J M, Wang J K, Wei D. 2024. Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates. Journal of Integrative Agriculture23, 1703–1717.

Calabi-Floody M, Bendall J S, Jara A A, Welland M E, Theng B, Rumpel C, Mora M L. 2011. Nanoclays from an Andisol: Extraction properties and carbon stabilization. Geoderma161, 159–167.

Carter M R, Gregorich E G. 2007. Soil Sampling and Methods of Analysis. CRC Press, Boca Raton.

Chang F D, Zhang H Y, Zhao N, Zhao P Y, Song J S, Yu R, Kan Z R, Wang X Q, Wang J, Liu H J, Han D X, Wen X Y, Li Y Y. 2024. Green manure removal with reduced nitrogen improves saline-alkali soil organic carbon storage in a wheat–green manure cropping system. Science of the Total Environment926, 171827.

Chen C M, Dynes J J, Wang J, Sparks D L. 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology48, 13751–13759.

Chen C M, Hall S J, Coward E, Thompson A. 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications11, 2255.

Chen M M, Zhang S R, Liu L, Ding X D. 2023. Influence of organic fertilization on clay mineral transformation and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil & Tillage Research230, 105702.

Chen M M, Zhang S R, Liu L, Liu J G, Ding X D. 2022. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant and Soil474, 233–249.

Chen Y L, Huang L, Cheng L J, Liu Z J, Xue B. 2023. Straw returning and potassium fertilization affect clay mineralogy and available potassium. Nutrient Cycling in Agroecosystems126, 195–211.

Churchman G J. 2010. Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis. Physics and Chemistry of the Earth35, 927–940.

Colombo C, Palumbo G, He J Z, Pinton R, Cesco S. 2014. Review on iron availability in soil: Interaction of Fe minerals plants and microbes. Journal of Soils and Sediments14, 538–548.

Das R, Purakayastha T J, Das D, Ahmed N, Kumar R, Biswas S, Walia S S, Singh R, Shukla V K, Yadava M S, Ravisankar N, Datta S C. 2019. Long-term fertilization and manuring with different organics alter the stability of carbon in colloidal organo-mineral fractions in soils of varying clay mineralogy. Science of the Total Environment684, 682–693.

Denef K, Six J. 2010. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science56, 469–479.

Franzluebbers A J, Arshad M A. 1996. Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Canadian Journal of Soil Science76, 387–393.

Fang H, Liu K L, Li D M, Peng X H, Zhang W J, Zhou H. 2021. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil. Soil & Tillage Research213, 105137.

Fernández-Ugalde O, Barré P, Hubert F, Virto I, Girardin C, Ferrage E, Caner L, Chenu C. 2013. Clay mineralogy differs qualitatively in aggregate-size classes: Clay-mineral-based evidence for aggregate hierarchy in temperate soils. European Journal of Soil Science64, 410–422.

Fu Y, Zhao Y K, Wang H, Chen X W, Wang Y X. 2021. A new method for weakening slaking of collecting eroded aggregates by water erosion. Journal of Soils and Sediments21, 2497–2510.

Gabriel G V, Oliveira L C, Barros D J, Bento M S, Neu V, Toppa R H, Carmo J B, Navarrete A A. 2020. Methane emission suppression in flooded soil from Amazonia. Chemosphere250, 126263.

Gao S J, Cao W D, Zhou G P, Rees R M. 2021. Bacterial communities in paddy soils changed by milk vetch as green manure: A study conducted across six provinces in south China. Pedosphere31, 521–530.

Gao S J, Li S, Zhou G P, Cao W D. 2023. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China. Journal of Integrative Agriculture22, 2233–2247.

Guascito M R, Cesari D, Chirizzi D, Genga A, Contini D. 2015. XPS surface chemical characterization of atmospheric particles of different sizes. Atmospheric Environment116, 146–154.

Guhra T, Stolze K, Totsche K U. 2022. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry164, 108483.

Han T F, Huang J, Liu K L, Fan H Z, Shi X J, Chen J, Jiang X J, Liu G R, Liu S J, Zhang L, Xu Y M, Feng G, Zhang H M. 2021. Soil potassium regulation by changes in potassium balance and iron and aluminum oxides in paddy soils subjected to long-term fertilization regimes. Soil and Tillage Research214, 105168.

Hartmann M, Six J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment4, 4–18.

He Y B, Gu F, Xu C, Wang Y. 2019. Assessing of the influence of organic and inorganic amendments on the physical-chemical properties of a red soil (Ultisol) quality. Catena183, 104231.

Huang C Q, Meng S M, Tan W F, Wen S L, Li D C, Wang B R, Koopal L K. 2021. Regional differences in mineral weathering characteristics of zonal soils under intensive agriculture. Applied Clay Science215, 106336.

Huang X L, Tang H Y, Kang W J, Yu G H, Ran W, Hong J P, Shen Q R. 2018. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice–wheat cropping system. Soil Biology and Biochemistry120, 12–23.

Huang Y N, Huang L, Gao J S, Geng M J, Xue B, Zhang H M, Huang J. 2023. Effects of long-term green manure application on organic carbon fractions and clay minerals and their interactions in paddy soil aggregates. Plant and Soil14, 1–18.

Huang Y N, Huang L, Nie J, Geng M J, Lu Y H, Liao Y L, Xue B. 2022. Effects of substitution of chemical fertilizer by Chinese milk vetch on distribution and composition of aggregates-associated organic carbon fractions in paddy soils. Plant and Soil481, 641–659

Igwe C A, Akamigbo F, Mbagwu J. 1999. Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability. Geoderma92, 111–123.

Jozedaemi E, Golchin A. 2024. Changes in aggregate-associated carbon and microbial respiration affected by aggregate size, soil depth, and altitude in a forest soil. Catena234, 107567.

Kemper W D, Rosenau R C. 1986. Aggregate stability and size distribution, In: Klute A, ed., Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9. Soil Science Society of America, Madison, WI, USA, pp. 425–442.

Khan M I, Gwon H S, Alam M A, Song H J, Das S, Kim P J. 2020. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Applied Soil Ecology147, 103400.

Kim J W, Dong H, Seabaugh J, Newell S W, Eberl D D. 2004. Role of microbes in the smectite-to-illite reaction. Science303, 830–832.

Kirsten M, Mikutta R, Kimaro D N, Feger K H, Kalbitz K. 2021. Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics. Soil7, 363–375.

Kleber M, Bourg I C, Coward E K, Hansel C M, Myneni S C B, Nunan N. 2021. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment2, 402–421.

Kögel-Knabner I, Amelung W. 2021. Soil organic matter in major pedogenic soil groups. Geoderma384, 114785.

Lenhardt K R, Breitzke H, Buntkowsky G, Mikutta C, Rennert T. 2022. Interactions of dissolved organic matter with short-range ordered aluminosilicates by adsorption and co-precipitation. Geoderma423, 115960.

Lehmann J, Kinyangi J, Solomon D. 2007. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry85, 45–57.

Li Q, Guo G G, Singh B P, Li L F, Hu W F, Wang H L, Li Y C. 2023a. Associations of soil Fe oxides and organic carbon vary in different aggregate fractions under warming. Journal of Soils and Sediments23, 2744–2755.

Li Q, Hu W F, Li L F, Li Y C. 2023b. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification associations and influencing factors. Science of the Total Environment855, 158710.

Liang H, Zhou G P, Gao S J, Nie J, Xu C X, Wu J, Liu C Z, Lv Y H, Huang Y B, Geng M J, Wang J H, He T G, Cao W D. 2023. Exploring site-specific N application rate to reduce N footprint and increase crop production for green manure-rice rotation system in southern China. Journal of Environmental Management347, 119033.

Lima A P B, Inda A V, Zinn Y L, Silva E R D, Nascimento P C. 2022. Soil formation and properties along a sedimentary lithosequence in the ecotonal Cerrados of Mato Grosso Brazil. Catena219, 106599.

Lindsay W L. 1991. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil130, 27–34.

Liu Y J, Wu S L, Nguyen T, Gordon S, Chan T S, Lu Y R, Huang L B. 2018. Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Environmental Pollution242, 1500–1509.

Liu Y K, Zhang S C, Zou C N, Wang X M, Sokolov I, Su J, Wang H J, He K. 2021. Quantitative measurement of interaction strength between kaolinite and different oil fractions via atomic force microscopy: Implications for clay-controlled oil mobility. Marine and Petroleum Geology133, 105296.

Maltoni K L, De Mello L M M, Dubbin W E. 2017. The effect of Ferralsol mineralogy on the distribution of organic C across aggregate size fractions under native vegetation and no-tillage agriculture. Soil Use and Management33, 328–338.

Montgomery D R. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America104, 13268–13272.

Mulvaney R L. 1996. Nitrogen-Inorganic forms. In: Sparks D L, ed., Methods of Soil Analysis. Part 3. Agronomy Monograph No. 5. Soil Science Society of America, Madison, WI, USA, pp. 1123–1184.

Ndzana G M, Huang L, Zhang Z Y, Zhu J, Liu F, Bhattacharyya R. 2019. The transformation of clay minerals in the particle size fractions of two soils from different latitude in China. Catena175, 317–328.

Newcomb C J, Qafoku N P, Grate J W, Bailey V L, Yoreo De J J. 2017. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nature Communications8, 396.

Oades J M. 1984. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil76, 319–337.

Olagoke F K, Bettermann A, Nguyen P T B, Redmile-Gordon M, Babin D, Smalla K, Nesme J, Sørensen S J, Kalbitz K, Vogel C. 2022. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biology and Fertility of Soils58, 435–457.

Parfitt R, Childs C. 1988. Estimation of forms of Fe and Al - A review and analysis of contrasting soils by dissolution and Mossbauer methods. Soil Research26, 121–144.

Philippot L, Chenu C, Kappler A, Rillig M C, Fierer N. 2023. The interplay between microbial communities and soil properties. Nature Reviews Microbiology22, 226–239.

Possinger A R, Zachman M J, Enders A, Levin B D A, Muller D A, Kourkoutis L F, Lehmann J. 2020. Organo–organic and organo–mineral interfaces in soil at the nanometer scale. Nature Communications11, 6103.

Rabot E, Wiesmeier M, Schlütera S, Vogel H J. 2018. Soil structure as an indicator of soil functions: A review. Geoderma314, 122–137.

Rakhsh F, Golchin A, Beheshti A, Nelson P N. 2020. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry151, 108036.

Mehra O P, Jackson M L. 1960. Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate. Clays and Clay Minerals7, 317–327.

Regelink I C, Stoof C R, Rousseva S, Weng L P, Lair G J, Kram P, Nikolaidis N P, Kercheva M, Banwart S, Comans R. 2015. Linkages between aggregate formation porosity and soil chemical properties. Geoderma247–248, 24–37.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates soil biota and soil organic matter dynamics. Soil & Tillage Research79, 7–31.

Song Y L, Wang C Y, Linderholm H W, Fu Y, Cai W Y, Xu J X, Zhuang L W, Wu M X, Shi Y X, Wang G F, Chen D L. 2022. The negative impact of increasing temperatures on rice yields in southern China. Science of the Total Environment820, 153262.

Sullivan P L, Billings S A, Hirmas D, Li L, Zhang X, Ziegler S, Murenbeeld K, Ajami H, Guthrie A, Singha K, Giménez D, Duro A, Moreno V, Flores A, Cueva A, Koop, Aronson E L, Barnard H R, Banwart S A, Keen R M, et al. 2022. Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science Reviews225, 103873.

Sun Z H, Liu Z, Han J C, Wang H Y, Zhang H O, Yan J K. 2023. Long-term effects of soft rock amendment on changes of soil aggregate cementing agents of sandy soil by SEM-EDS. Frontiers in Environmental Science11, 1207781.

Szymański W. 2017. Chemistry and spectroscopic properties of surface horizons of Arctic soils under different types of tundra vegetation – A case study from the Fuglebergsletta coastal plain (SW Spitsbergen). Catena156, 325–337.

Thomaz E L, Araujo-Junior C F, Vendrame P, Melo T R. 2022. Mechanisms of aggregate breakdown in (sub)tropical soils: Effects of the hierarchical resistance. Catena216, 106377.

Trakoonyingcharoen P, Kheoruenromne I, Suddhiprakarn A, Gilkes R J. 2006. Properties of kaolins in red Oxisols and red Ultisols in Thailand. Applied Clay Science32, 25–39.

Vaksmaa A, Van Alen T A, Ettwig K F, Lupotto E, Valè G, Jetten M S, Lüke C. 2017. Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Frontiers in Microbiology8, 2127.

Walkley A J, Black I A. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science37, 29–38.

Wen Y, Liu W, Deng W, He X, Yu G. 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. Science of the Total Environment651, 591–600.

Wen Y M, You J W, Zhu J, Hu H Q, Gao J S, Huang J. 2020. Long-term green manure application improves soil K availability in red paddy soil of subtropical China. Journal of Soils and Sediments21, 63–72.

Wu S L, Nguyen T A H, Liu Y J, Southam G, Wang S C, Chan T S, Lu Y R, Huang L B. 2019a. Deficiencies of secondary Fe (oxy)hydroxides associated with phyllosilicates and organic carbon limit the formation of water-stable aggregates in Fe-ore tailings. Chemical Geology523, 73–87.

Wu S L, Liu Y J, Southam G, Robertson L, Chiu T H, Crossa A T, Dixon K W, Stevens J C, Zhong H T, Chan T S, Lu Y J, Huang L B. 2019b. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Science of the Total Environment651, 192–202.

Wu X L, Wei Y J, Cai C F, Yuan Z J, Li D Q, Liao Y S, Deng Y S. 2021. Quantifying the contribution of phyllosilicate mineralogy to aggregate stability in the East Asian monsoon region. Geoderma393, 115036.

Xie J Y, Gao J Y, Cao H B, Li J H, Wang X, Zhang J, Meng H S, Hong J P, Li T L, Xu M G. 2024. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China. Journal of Integrative Agriculture23, 1034–1047.

Xie J C, Fan Q Y, Liang T, Liang H, Wang H, Gui Z G, Wu J, Gao S J, Cao W D. 2024. Green manuring reduces cadmium accumulation in rice: Roles of iron plaque and dissolved organic matter. Environmental Research251, 118719.

Xue B, Huang L, Huang Y N, Kubar K A, Li X K, Lu J W. 2020. Straw management influences the stabilization of organic carbon by Fe (oxyhydr)oxides in soil aggregates. Geoderma358, 113987.

Xue B, Huang L, Huang Y N, Yin Z Y, Li X K, Lu J W. 2019a. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping system. Catena177, 1–12.

Xue B, Huang L, Huang Y N, Zhou F L, Li F, Kubar K A, Li X K, Lu J W, Zhu J. 2019b. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils. Soil & Tillage Research187, 161–171.

Xue B, Huang L, Li X K, Lu J W, Gao R L, Kamran M, Fahad S. 2022. Effect of clay mineralogy and soil organic carbon in aggregates under straw incorporation. Agronomy12, 534.

Yi Q, Wu S L, Southam G, Robertson L, You F, Liu Y J, Wang S C, Saha N, Webb R, Wykes J, Chan T S, Lu Y R, Huang L B. 2021. Acidophilic iron- and sulfur-oxidizing bacteria Acidithiobacillus ferrooxidans drives alkaline pH neutralization and mineral weathering in Fe Ore tailings. Environmental Science & Technology55, 8020–8034.

Yu W J, Huang W J, Weintraub-Leff S R, Hall S J. 2022. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry172, 108756.

Zhao Z J, Chang E, Lai P, Dong Y, Xu R K, Fang D, Jiang J. 2019. Evolution of soil surface charge in a chronosequence of paddy soil derived from Alfisol. Soil and Tillage Research192, 144–150.

Zhang B F, Yu T, Guo H Z, Chen J R, Liu Y, Yuan P. 2022. Effect of the SiO2/Al2O3 molar ratio on the microstructure and properties of clay-based geopolymers: A comparative study of kaolinite-based and halloysite-based geopolymers. Clays and Clay Minerals70, 882–902.

Zhang M N, Song X J, Wu X P, Zheng F J, Li S P, Zhuang Y, Man X L, Degré A. 2024a. Microbial regulation of aggregate stability and carbon sequestration under long-term conservation tillage and nitrogen application. Sustainable Production and Consumption44, 74–86.

Zhang S T, Ren T, Cong W F, Fang Y T, Zhu J, Zhao J, Cong R H, Li X K, Lu J W. 2024b. Oilseed rape-rice rotation with recommended fertilization and straw returning enhances soil organic carbon sequestration through influencing macroaggregates and molecular complexity. AgricultureEcosystems & Environment367, 108960.

Zhang Y, Liu Q G, Zhang W D, Wang X H, Mao R, Tigabu M, Ma X Q. 2021. Linkage of aggregate formation aggregate-associated C distribution and microorganisms in two different-textured ultisols: A short-term incubation experiment. Geoderma394, 114979.

Zhang Z H, Nie J, Liang H, Wei C L, Wang Y, Liao Y L, Lu Y H, Zhou G P, Gao S J, Cao W D. 2023. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China. Journal of Integrative Agriculture22, 1529–1545.

Zhang Z Y, Huang L, Liu F, Wang M K, Fu Q L, Zhu J. 2016. Characteristics of clay minerals in soil particles of two Alfisol in China. Applied Clay Science120, 51–60.

Zhou W, Ma Q X, Wu L, Hu R G, Jones D L, Chadwick D R, Jiang Y B, Wu Y P, Xia X G, Yang L, Chen Y F. 2022. The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. AgricultureEcosystems & Environment326, 107806.

[1] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[2] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[3] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[4] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[5] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[6] Junyu Xie, Jianyong Gao, Hanbing Cao, Jiahui Li, Xiang Wang, Jie Zhang, Huisheng Meng, Jianping Hong, Tingliang Li, Minggang Xu. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China[J]. >Journal of Integrative Agriculture, 2024, 23(3): 1034-1047.
[7] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[8] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[9] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[10] ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 521-531.
[11] LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3611-3625.
[12] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[13] ZHOU Xing, LIAO Yu-lin, LU Yan-hong, Robert M. REES, CAO Wei-dong, NIE Jun, LI Mei. Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2103-2115.
[14] CHEN Jing-rui, QIN Wen-jing, CHEN Xiao-fen, CAO Wei-dong, QIAN Guo-min, LIU Jia, XU Chang-xu. Application of Chinese milk vetch affects rice yield and soil productivity in a subtropical double-rice cropping system[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2116-2126.
[15] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
No Suggested Reading articles found!