Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2389-2409    DOI: 10.1016/j.jia.2024.11.032
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields

Xiaoqiang Liu1, 2, Mingqi Li1, Dong Xue1, Shuai He2, 3, Junliang Fan1, 2#, Fucang Zhang1, 2#, Feihu Yin2, 3#

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Yangling 712100, China

2 Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China

3 Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China

 Highlights 
Leaching can compensate the negative effects of soil salinity on cotton.
Increasing leaching amount can increase the nitrogen uptake.
Cotton fiber yield and quality depends on the nitrate nitrogen residue in the saline-alkaline soils.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

提高棉花纤维质量是增加棉农经济收入的重要途径。然而,如何在不降低棉花纤维产量的情况下实现纤维高质量,仍然是盐碱化棉田面临的一大挑战。本研究的目的是确定淋洗模式如何在盐碱地实现高产优质的棉花。于2020年和2021在盐碱化棉田进行了不同的滴灌淋洗量和淋洗时期对土壤盐分、棉纤维产量和质量的试验。采用了五种淋洗量(CK0 mmW175 mmW2150 mmW3225 mm W4300 mm)和三种淋洗时期T1淋洗量在苗期淋洗一次;T2淋洗量在苗期和蕾期淋洗两次;T3淋洗量在苗期、蕾期和花铃期淋洗三次)进行了大田试验。结果表明,土壤盐分和NO3-N淋洗量的增加而降低。棉花各器官中棉铃对氮的吸收量最大,总氮积累量随淋洗量的增加而增加。W3T2处理的棉花纤维产量和灌溉水生产力(IWP)最优,其在20202021年分别为 3199 kg ha-1 2771 kg ha-10.5482 kg m-30.4912 kg m-3。棉纤维长度、棉纤维强度、棉纤维伸长率和棉纤维均一性随淋洗量的增加而增加,而马克隆值却与淋洗量呈负相关。土壤盐分、NO3-N及马克隆值与纤维质量(即长度、强度、伸长率和均一性)、产量、各器官(即根、茎和叶)的氮吸收量和总氮吸收量呈负相关。皮尔逊相关分析表明,纤维伸长率对土壤盐分最敏感。熵权-与理想点法耦合模型EM-TOPSIS)表明,在苗期和蕾期平均300 mm的淋洗量是维持土壤盐分和养分的平衡、实现棉纤维高产优质的最佳淋洗模式。因此,本研究发现最佳淋洗模式可降低土壤盐分,提高了氮素吸收,这有利于实现棉花纤维高产优质。此研究结果对于实现盐碱化棉田生育期滴灌淋洗的可持续生产具有重要指导意义。



Abstract  

Improving cotton fiber quality can increase the economic income of cotton farmers, but achieving high fiber quality without decreasing cotton fiber yield remains a major challenge in saline-alkaline cotton fields.  A field experiment was conducted in 2020 and 2021 on saline-alkaline soil with cotton under drip irrigation to examine how amount and timing of leaching affected soils salinity, cotton fiber yield and quality.  There were five leaching amounts (CK: 0 mm, W1: 75 mm, W2: 150 mm, W3: 225 mm and W4: 300 mm) and three leaching timings (T1: once at the seedling stage, T2: twice at the seedling and budding stages, and T3: thrice at the seedling, budding and pollen-setting stages).  Soil salinity, soil nitrate nitrogen (NO3-N), cotton nitrogen (N) uptake, irrigation water productivity (IWP), cotton fiber yield, fiber length, fiber uniformity, fiber strength, fiber elongation, micronaire and fiber quality index (FQI) were investigated.  The results indicated that soil salinity and NO3-N reduced with increasing leaching amount.  The N uptake of cotton bolls was greater than in cotton leaves, stems and roots, and total N accumulation increased with increasing leaching amount.  The optimal cotton fiber yield and IWP occurred in treatment W3T2, and were 3,199 and 2,771 kg ha−1, and 0.5482 and 0.4912 kg m−3 in 2020 and 2021, respectively.  Fiber length, strength, elongation, and uniformity increased with increasing leaching amount, while there was a negative relationship between fiber micronaire and leaching amount.  Soil salinity, NO3-N and fiber micronaire were negatively correlated with fiber quality (i.e., length, strength, elongation and uniformity) and yield, nitrogen uptake of various organs (i.e., root, stems and leaves) and whole plant nitrogen uptake.  Pearson correlation analysis revealed that fiber elongation was most sensitive to soil salinity.  The method of Entropy–Order Preference by Similarity to Ideal Solution (EM–TOPSIS) indicated that leaching of 300 mm of water applied equally at the seedling and budding periods was the optimal treatment to maintain soil salinity and nutrient levels and achieve high cotton fiber yield and quality.  In conclusion, the optimal level of leaching treatment decreased soil salinity and improved nitrogen uptake and was beneficial to achieve high fiber yield and quality.  Our results will be significant for guiding drip irrigation practice of leaching on saline-alkaline soils for sustainable cotton fiber production.


Keywords:  fiber yield        fiber quality        leaching        soil salinity        drip irrigation  
Received: 28 June 2024   Online: 16 November 2024   Accepted: 08 October 2024
Fund: 

This research was financially supported by the National Key Research and Development Program of China (2022YFD1900401) and the Science and Technology Project of Agriculture, Xinjiang Production and Construction Corps, China (2021AB037).

About author:  Xiaoqiang Liu, Mobile: +86-18720054193, E-mail: liuxiaoqiangyx@163.com; #Correspondence Junliang Fan, Mobile: +86-15129391580, E-mail: nwwfjl@163.com; Fucang Zhang, E-mail: zhangfc@nwsuaf.edu.cn; Feihu Yin, E-mail: nkyyfh@sohu.com

Cite this article: 

Xiaoqiang Liu, Mingqi Li, Dong Xue, Shuai He, Junliang Fan, Fucang Zhang, Feihu Yin. 2025. Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields. Journal of Integrative Agriculture, 24(6): 2389-2409.

Abdelraheem A, Esmaeili N, Connell M O, Zhang J F. 2019. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products130, 118–129.

Abdelraheem A, Zhang J F. 2016. Quantitative Trait Locus Analysis of Drought and Salt Tolerance in an Introgressed Recombinant Inbred Line Population of Upland Cotton. New Mexico State University Press, New Mexico.

Ashraf M, Ahmad S. 2000. Influence of sodium chloride on ion accumulation, yield components and fiber characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Research66, 115–127.

Ayars J E, Hoffman G J, Corwin D L. 2012. Leaching and root zone salinity control. In: Wallender W W, Tanji K K, eds., Agricultural Salinity Assessment and Management. American Society of Civil Engineers, New York. pp. 371–403.

Ayyadurai P, Manickasundaram P. 2014. Growth, nutrient uptake and seed cotton yield as influenced by foliar nutrition and drip fertigation in cotton hybrid. International Journal of Agricultural Sciences10, 276–279.

Bajwa S G, Vories E D. 2007. Spatial analysis of cotton (Gossypium hirsutum L.) canopy responses to irrigation in a moderately humid area. Irrigation Science25, 429–441.

Ben-Gal A, Ityel E, Dudley L, Cohen S, Yermiyahu U, Presnov E, Zigmond L, Shani U. 2008. Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers. Agriculture Water Management95, 587–597.

Bradley P M, Morris J T. 1991. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alternifloraEcology71, 282–287.

Chauhdary J N, Bakhsh A, Ragab R, Khaliq A, Engel B A, Rizwan M, Shahid M A, Nawaz Q. 2020. Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions. Agriculture Water Management230, 105952.

Chen B L, Li J L, Zhang H, Li D S, Zhang L, Zhou Z G. 2015. Temporal and spatial distribution characteristics of soil salinity in coastal cotton fields and their effect on lint yield and fiber quality. Journal of Soil and Water Conservation29, 182–187.

Chen M, Kang, Y H, Wan S Q, Liu S P. 2009. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agriculture Water Management96, 1766–1772.

Colpaert B, Steppe K, Gomand A, Vanhoutte B, Remy S, Boeckx P. 2021. Experimental approach to assess fertilizer nitrogen use, distribution, and loss in pear fruit trees. Plant Physiology and Biochemistry165, 207–216.

Dagdelen N, Basal H, Yilmaz E, Gurbuz T, Akcay S. 2009. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agriculture Water Management96, 111–120.

Dhindsa R S, Beasley C A, Ting I P. 1975. Osmoregulation in cotton fiber - Accumulation of potassium and malate during growth. Plant Physiology56, 394–398.

Ding B X, Cao H X, Zhang J H, Bai Y G, He Z J, Guo S C, Wang B, Jia Z L, Liu H B. 2023. Biofertilizer application improved cotton growth, nitrogen use efficiency, and yield in saline water drip-irrigated cotton fields in Xinjiang, China. Industrial Crops and Products205, 117553.

Drake J A, Cavagnaro T R, Cunningham S C, Jackson W R, Patti A F. 2016. Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degradation & Development27, 52–59.

Fernández J E, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas M V. 2020. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agriculture Water Management237, 106074.

GB 1103.1-2012. 2012. Cotton-Upland Cotton. National Standard of the People’s Republic of China. (in Chinese)

Giordano M, Scheierling S M, Tréguer D O, Turral H, McCornick P G. 2021. Moving beyond ‘more crop per drop’: Insights from two decades of research on agricultural water productivity. International Journal of Water Resources Development37, 137–161.

Girma K, Teal R K, Freeman K W, Boman R K, Raun W R. 2007. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers. Journal of Cotton Research11, 12–19.

Guan H J, Li J S, Li Y F. 2013. Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions. Agriculture Water Management124, 37–51.

Guo L J, Cao H X, Helgason W D, Yang H, Wu X Y, Li H Z. 2022. Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China. Agriculture Water Management270, 107731.

Gwathmey C O, Bange M P, Brodrick R. 2016. Cotton crop maturity: A compendium of measures and predictors. Field Crops Research191, 41–53.

He Z J, Cao H G, Hu Q Y, Zhang Y, Nan X P, Li Z J. 2023. Optimization of apple irrigation and N fertilizer in Loess Plateau of China based on ANP-EWM-TOPSIS comprehensive evaluation. Scientia Horticulturae311, 111794.

Hou X H, Xiang Y Z, Fan J L, Zhang F C, Hu W H, Yan F L, Guo J J, Xiao C, Li Y P, Cheng H L, Li Z J. 2021. Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China. Agriculture Water Management256, 107134.

Hwang C L, Masud A M, Paidy S R, Yoon K. 1981. Multiple attribute decision making-methods and applications a state-of-the-art survey. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Heidelberg. pp. 192–206.

Ierna A, Pandino G, Lombardo S, Mauromicale G. 2011. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agriculture Water Management101, 35–41.

Ivushkin K, Bartholomeus H, Bregt A K, Pulatov A, Kempen B, Sousa L D. 2019. Global mapping of soil salinity change. Remote Sensing of Environment231, 111260.

Khan A, Wang L, Ali S, Tung S A, Hafeez A, Yang G. 2017. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research214, 164–174.

Kodur S, Shrestha U B, Maraseni T N, Deo R C. 2019. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. Journal of Cleaner Production222, 960–970.

Korkor S, Tayel M Y, Antar F. 1974. The effect of salinity on cotton yield and quality. Egyptian Journal of Soil Science14, 137–148.

Li N N, Li J H, Tung S A, Shi X J, Hao X Z, Shi F, Wahid M A, Ali B, Rashid R, Wang J, Luo H H. 2022. Optimal irrigation amount can increase cotton lint yield by improving canopy structure and microenvironment under non-film deep drip irrigation. Journal of Cleaner Production360, 132156.

Liang J P, Shi W J. 2021. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Research262, 108027.

Liu L P, Long X H, Shao H B, Liu Z P, Tao Y, Zhou Q S, Zong J Q. 2015. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China. Ecological Engineering81, 328–334.

Liu X Q, Yan F L, Wu L F, Zhang F C, Yin F H, Abdelghany A E, Fan J L, Xiao C, Li J B, Li Z J. 2023. Leaching amount and timing modified the ionic composition of saline-alkaline soil and increased seed cotton yield under mulched drip irrigation. Field Crops Research299, 108988.

Liu X W, Feike T, Chen S Y, Shao L W, Sun H Y, Zhang X Y. 2016. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat–summer maize double cropping system in the low plain of North China. Journal of Integrative Agriculture15, 2886–2898.

Longenecke D E. 1974. The influence of high sodium in soils upon fruiting and shedding, boll characteristics, fiber properties, and yields of two cotton species. Soil Science118, 387–396.

Ma C, Naidu R, Liu F, Lin C, Ming H. 2012. Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil. Biodegradation23, 907–916.

Mactavish R M, Cohen R A. 2017. Water column ammonium concentration and salinity influence nitrogen uptake and growth of Spartina alternifloraJournal of Experimental Marine Biology and Ecology488, 52–59.

Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics444, 139–158.

Mahmoodabadi M, Yazdanpanah N, Sinobas L R, Pazira E, Neshat A. 2013. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agriculture Water Management120, 30–38.

Majumdar A, Majumdar P K, Sarkar B. 2005. Determination of the technological value of cotton fiber: A comparative study of the traditional and multiple-criteria decision-making approaches. Autex Research Journal5, 71–80.

Mao W, Zhu Y, Wu J, Ye M, Yang J. 2022. Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas. Agriculture Water Management262, 107398.

Marani A, Amirav A. 1971. Effects of soil moisture stress on 2 varieties of upland cotton in Israel. 1. The coastal plain region. Experimental Agriculture7, 213–224.

Mauget S, Ulloa M, Mitchell-McCallister D. 2022. Simulated irrigation water productivity and related profit effects in U.S. Southern High Plains cotton production. Agriculture Water Management266, 107582.

May O L, Jividen G M. 1999. Genetic modification of cotton fiber properties as measured by single- and high-volume instruments. Crop Science39, 328–333.

Meena M D, Joshi P K, Jat H S, Chinchmalatpure A R, Narjary B, Sheoran P, Sharma D K. 2016. Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard pearl millet cropping system. Catena140, 1–8.

Minhas P S, Ramos T B, Ben-Gal A, Pereira L S. 2020. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agriculture Water Management227, 105832.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.

Muratoglu A. 2020. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Science of the Total Environment742, 140553.

NBSC (National Bureau of Statistics of China). 2022. Online statistical database: Announcement of the National Bureau of Statistics on Cotton Production in 2022. [2022-12-26]. https://data.stats.gov.cn/easyquery.htm?cn=C01 (in Chinese)

Papastylianou P T, Argyrokastritis I G. 2014. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agriculture Water Management142, 127–134.

Paramasivam S, Alva A K, Fares A, Sajwan K S. 2002. Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. Journal of Environment Quality31, 671–681.

Pei S Z, Zeng H L, Dai Y L, Bai W Q, Fan J L. 2023. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images. Journal of Integrative Agriculture22, 2536–2552.

Qadir M, Qureshi R H, Ahmad N. 1997. Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Land Research & Rehabilitation11, 343–352.

Razzouk S, Whittington W J. 1991. Effects of salinity on cotton yield and quality. Field Crops Research26, 305–314.

R Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Read J J, Reddy K R, Jenkins J N. 2006. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy24, 282–290.

Rochester I J. 2012. Using seed nitrogen concentration to estimate crop N use-efficiency in high-yielding irrigated cotton. Field Crops Research127, 140–145.

Shannon C E. 1997. The mathematical theory of communication. M D Computing14, 306–317.

Sun J X, Kang Y H, Wan S Q, Hu W. 2017. Influence of drip irrigation level on salt leaching and vegetation growth during reclamation of coastal saline soil having an imbedded gravel-sand layer. Ecological Engineering108, 59–69.

Tan S, Wang Q, Xu D, Zhang J, Shan Y. 2017. Evaluating effects of four controlling methods in bare strips on soil temperature, water, and salt accumulation under film-mulched drip irrigation. Field Crops Research214, 350–358.

Touchette B W, Smith G A, Rhodes K L, Poole M. 2009. Tolerance and avoidance: Two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. Journal of Experimental Marine Biology and Ecology380, 106–112.

USDA (United States Department of Agriculture). 2017. Online statistical database: Cotton and wool outlook. USDA-ERS. [2023-12-6]. https://www.ers.usda.gov/publications/pub-details/?pubid=84691

Wang D, Li G Y, Mo Y, Cai M K, Bian X Y. 2018. Evaluation of optimal nitrogen rate for corn production under mulched drip fertigation and economic benefits. Field Crops Research216, 225–233.

Wang H D, Cheng M H, Zhang S H, Fan J L, Feng H, Zhang F C, Wang X K, Sun L J, Xiang Y Z. 2021b. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods. Agriculture Water Management256, 107130.

Wang H D, Wu L F, Cheng M H, Fan J L, Zhang F C, Zou Y F, Chau H W, Gao Z J, Wang X K. 2018. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Research219, 169–179.

Wang H D, Wu L F, Wang X K, Zhang S H, Cheng M H, Feng H, Fan J L, Zhang F C, Xiang Y Z. 2021a. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. Agriculture Water Management245, 106662.

Wang R, Wan S, Sun J, Xiao H. 2018. Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation. Agriculture Water Management209, 20–31.

Wang T Y, Wang Z H, Zhang J Z, Ma K. 2022. An optimum combination of irrigation amount, irrigation water salinity and nitrogen application rate can improve cotton (for fiber) nitrogen uptake and final yield. Industrial Crops and Products187, 115386.

Wei K, Zhang J H, Wang Q J, Guo Y, Mu W Y. 2022. Irrigation with ionized brackish water affects cotton yield and water use efficiency. Industrial Crops and Products175, 114244.

Xiao C, Ji Q Y, Zhang F C, Li Y, Fan J L, Hou X H, Yan F L, Liu X Q, Gong K Y. 2023. Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China. Agriculture Water Management279, 108172.

Xiao C, L M, Fan J L, Zhang F C, Li Y, Cheng H L, Li Y P, Hou X H, Chen J Q. 2021a. Salt leaching with brackish water during growing season improves cotton growth and productivity, water use efficiency and soil sustainability in southern Xinjiang. Water13, 182602.

Xiao C, Zou H Y, Fan J L, Zhang F C, Li Y, Sun S K, Pulatov A. 2021b. Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model. Agriculture Water Management257, 107157.

Xu P P, Feng W W, Qian H, Zhang Q Y. 2019. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China. International Journal of Environmental Research and Public16, 1492.

Yan F L, Liu X Q, Bai W Q, Fan J L, Zhang F C, Xiang Y Z, Hou X H, Pei S Z, Dai Y L, Zeng H L, Wang Y. 2022. Multi-objective optimization of water and nitrogen regimes for drip-fertigated sugar beet in a desert climate. Field Crops Research288, 108703.

Yan F L, Zhang F C, Fan X K, Fan J L, Wang Y, Zou H Y, Wang H D, Li G D. 2020. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of dripfertigated spring maize in northwest China. Agriculture Water Management243, 106440.

Yang G, Chu K, Tang H, Nie Y, Zhang X. 2013. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. Journal of Integrative Agriculture12, 999–1007.

Yang G, Li F D, Tian L J, He X L, Gao Y L, Wang Z L, Ren F T. 2020. Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation. Soil & Tillage Research199, 104592.

Yang T, Šimůnek J, Mo M H, Mccullough-Sanden B, Shahrokhnia H, Cherchian S, Wu L S. 2019. Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and-2D simulations. Soil & Tillage Research194, 104342.

Yang X L, Lu Y L, Tong Y A, Yin X F. 2015. A 5-year lysimeter monitoring of nitrate leaching from wheat–maize rotation system: Comparison between optimum N fertilization and conventional farmer N fertilization. Agriculture Ecosystems & Environment199, 34–42.

Zafar S, Afzal H, Ijaz A, Mahmood A, Ayub A, Nayab A, Hussain S, UL-Hussan M, Sabir M A, Zulfiqar U, Zulfiqar F, Moosa A. 2023. Cotton and drought stress: An updated overview for improving stress Tolerance. South African Journal of Botany161, 258–268.

Zhang C, Li X B, Kang Y H, Wang, X M. 2019. Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils. Agriculture Water Management218, 8–16.

Zhang H, Xiong Y, Huang G, Xu X, Huang Q. 2017. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agriculture Water Management179, 205–214.

Zhang J P, Feng D, Zheng C L, Sun C T, Sun J S, Gao Yang. 2014. Effects of saline water irrigation on soil water-heat-salt variation and cotton yield and quality. Transactions of the Chinese Society of Agricultural Engineering45, 161–167. (in Chinese)

Zhang Y H, Li X Y, Šimůnek J, Shi H B, Chen N, Hu Q, Tian T. 2021. Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages. Agriculture Water Management244, 106601.

Zong R, HanY, Tan M D, Zou R H, Wang Z H. 2022. Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season. Agriculture Water Management263, 107440.

[1] LIU Li-jun, CHEN He-quan, DAI Xiao-bing, WANG Hui, PENG Ding-xiang. Effect of Planting Density and Fertilizer Application on Fiber Yield of Ramie (Boehmeria nivea)[J]. >Journal of Integrative Agriculture, 2012, 12(7): 1199-1206.
No Suggested Reading articles found!