Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1542-1561    DOI: 10.1016/j.jia.2024.09.026
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration

Hongyu Lin1, 2*, Jing Zheng1*, Minghua Zhou1#, Peng Xu1, Ting Lan3, Fuhong Kuang1, Ziyang Li1, 2, Zhisheng Yao4, Bo Zhu1

1 Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 College of Resources, Sichuan Agricultural University, Chengdu 611130, China

4 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

 Highlights 
SOC stocks are significantly increased after 11-year crop straw incorporation.
Crop straw incorporation significantly enhances soil aggregate structure.
50% chopped straw incorporation delivers the largest benefits for the SOC stock in calcareous soils.  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

秸秆还田常被作为维持作物产量、提高土壤有机碳(SOC)储量以及改善土壤质量的推荐的农田管理方式之一不同秸秆还田方式对土壤有机碳储量的长期影响仍存在不确定性。为评估不同秸秆还田方式对土壤有机碳储量的影响,从2007年到2018年开展了一项长期试验,设置了四种处理:MW0(玉米-小麦轮作、无秸秆还田)、MW50(玉米-小麦轮作、50%秸秆粉碎还田)、MWb50(玉米-小麦轮作、50%秸秆就地焚烧后还田)、MF50(玉米-休耕、50%秸秆粉碎还田)。结果表明,经过十余年连续秸秆还田后,MW50MWb50MF50处理下的SOC储量分别显著增加了32.4%12.2%17.4%;而在MW0处理下,SOC储量在11年长期试验后显著减少了22.9%。与MW0相比,秸秆还田显著增加了有机碳输入,改善了土壤团聚体结构,提高了溶解性有机碳(DOC)与颗粒性有机碳(POC)的比例,但土壤气态碳流失(土壤异养呼吸)并未显著增加因此秸秆还田能显著提升SOC积累速率和土壤SOC储量。DOC与微生物量碳(MBC)比例的增加、酸杆菌门和变形菌门相对丰度的提高以及拟杆菌门和绿弯菌门相对丰度的降低,是秸秆还田下土壤异养呼吸无显著增加甚至减少的主要原因。根据Rothamsted CarbonRothC)模型模拟结果,SOC储量在未来将达到平衡,MW50处理下的C储量平衡值最高,18.85 Mg ha-1。总的来说,田间试验(2007-2018)和RothC模型模拟的结果表明,长期来看,在亚热带山地石灰性土壤中玉米-小麦轮作且50%秸秆粉碎还田(MW50)对SOC储量增益优于其他秸秆还田处理



Abstract  
Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon (SOC) stocks as well as soil quality.  However, the long-term effects of different straw incorporation practices on the SOC stock remain uncertain.  In this study, a long-term experiment (2007 to 2018) with four treatments (MW0: maize–wheat rotation with no straw incorporation, MW50: maize–wheat rotation with 50% chopped straw incorporation, MWb50: maize–wheat rotation with 50% in situ burned harvested straw, and MF50: maize–fallow rotation with 50% harvested maize straw incorporation) was set up to evaluate the response of the SOC stock to different straw incorporation methods.  The results showed that the SOC stock significantly increased by 32.4, 12.2 and 17.4% under the MW50, MWb50 and MF50 treatments, respectively, after continuous straw incorporation over a decade, while the SOC stock under MW0 was significantly reduced by 22.9% after the 11 year long-term experiment.  Compared to MW0, straw incorporation significantly increased organic carbon input, and improved the soil aggregate structure and the ratio of dissolved organic carbon (DOC) to particulate organic carbon (POC), but it did not significantly stimulate soil heterotrophic respiration, resulting in the increased SOC accumulation rate and SOC stocks of bulk soil.  The increased ratio of DOC to microbial biomass carbon (MBC) enhanced the relative abundances of Acidobacteria and Proteobacteria but inhibited Bacteroidetes and Chloroflexi, and the bacterial relative abundances were the main reasons for the non-significant increase or even decrease in soil heterotrophic respiration with straw incorporation.  The SOC stock would reach an equilibrium based on the results of Rothamsted carbon (RothC) model simulations, with a long-term equilibrium value of 18.85 Mg ha–1 under MW50.  Overall, the results of the long-term field experiment (2007–2018) and RothC model simulation suggested that maize–wheat rotation with 50% chopped straw incorporation delivered the largest benefits for the SOC stock in calcareous soils of subtropical mountain landscapes over the long term.


Keywords:  soil organic carbon       crop straw        soil aggregate        soil heterotrophic respiration        RothC model  
Received: 20 March 2024   Accepted: 09 August 2024
Fund: 
This research was financially supported by the National Key Research and Development Program of China (2023YFD1901200), the National Natural Science Foundation of China (U22A20562), the Sichuan Science and Technology Program, China (2022YFS0500), the Project of Special Research Assistant of the Chinese Academy of Sciences (Jing Zheng), the China Postdoctoral Science Foundation (2022M723079), the Sichuan Provincial Postdoctoral Research Foundation, China (TB2022042) and the Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (IMHE-ZYTS-08).
About author:  Hongyu Lin, Mobile: +86-15683415241, E-mail: linhongyu17@mails.ucas.ac.cn; Jing Zheng, Mobile: +86-18224042294, E-mail: zhjing@imde.ac.cn; #Correspondence Minghua Zhou, Mobile: +86-15208257481, E-mail: mhuazhou@imde.ac.cn * These authors contributed equally to this study.

Cite this article: 

Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. 2025. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration. Journal of Integrative Agriculture, 24(4): 1542-1561.

Badía D, Martí C, Aguirre A J. 2013. Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Science of the Total Environment465, 233–239.

Bach E M, Williams R J, Hargreaves S K, Yang F, Hofmockel K S. 2018. Greatest soil microbial diversity found in micro-habitats. Soil Biology & Biochemistry118, 217–226.

Berhane M, Xu M, Liang Z Y, Shi J L, Wei G H, Tian X H. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta–analysis. Global Change Biology26, 2686–2701.

Bhattacharyya P, Bhaduri D, Adak T, Munda S, Satapathy B S, Dash P K, Padhy S R, Pattanayak A, Routray S, Chakraborti M, Baig M J, Mukherjee A K, Nayak A K, Pathak H. 2020. Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Industrial Crops and Products143, 111919.

Bhattacharyya T, Pal D K, Deshmukh A S, Deshmukh R R, Ray S K, Chandran P, Mandal C, Telpande B, Nimje A M, Tiwary P. 2011. Evaluation of RothC model using four long term fertilizer experiments in black soils, India. AgricultureEcosystems & Environment144, 222–234.

Bond-Lamberty B, Bailey V L, Chen M, Gough C M, Vargas R. 2018. Globally rising soil heterotrophic respiration over recent decades. Nature560, 80–83.

Buysse P, Schnepf-Kiss A C, Carnol M, Malchair S, Roisin C, Aubinet M. 2013. Fifty years of crop residue management have a limited impact on soil heterotrophic respiration. Agricultural and Forest Meteorology180, 102–111.

Campbell E E, William J P, Jennifer L, Soong K P, Thompson H N, Francesca C M. 2016. Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model. Soil Biology Biochemistry100, 160–174.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

Chen S T, Wang J, Zhang T T, Hu Z H, Zhou G Y. 2021. Warming and straw application increased soil respiration during the different growing seasons by changing crop biomass and leaf area index in a winter wheat–soybean rotation cropland. Geoderma391, 114985.

Chen Z M, Wang Q, Wang H Y, Bao L, Zhou J M. 2018. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice–wheat cropping system in southeastern China. Nutrient Cycling in Agroecosystems112, 61–73.

Cheng Z R, Guo J Y, Jin W, Liu Z T, Wang Q, Zha L, Zhou Z G, Meng Y L. 2024. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil & Tillage Research239, 106051.

Coleman K, Jenkinson D S. 1999. ROTHC-26.3. A model for the turnover of carbon in soils. In: Herts. Rothamsted Research, Harpenden, UK.

Coleman K, Jenkinson D S. 2014. RothC - a Model for the Turnover of Carbon in Soil - Model Description and Users Guide (Windows version). Rothamsted Research, Harpenden, UK.

Cooper L R, Haverland R L, Hendricks D M, Knisel W G. 1984. Microtrac particle-size analyzer: An alternative particle-size determination method for sediment and soils. Soil Science138, 138–146.

Dechow R, Franko U, Katterer T, Kolbe H. 2019. Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma337, 463–478.

Dendooven L, Patino-Zúniga L, Verhulst N, Luna-Guido M, Marsch R, Govaerts B. 2012. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. AgricultureEcosystems & Environment152, 50–58.

Desaeger J, Rao M R. 2000. Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crops Research65, 41–56.

Duiker S W, Lal R. 2000. Carbon budget study using CO2 flux measurements from a no till system in central Ohio. Soil & Tillage Research54, 21–30.

Farina R, Coleman K, Whitmore A P. 2013. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma200–201, 18–30.

Feng J, Zeng X M, Zhang Q G, Zhou X Q, Liu Y R, Huang Q Y. 2021. Soil microbial trait–based strategies drive metabolic efficiency along an altitude gradient. ISME Communications1, 71.

Fernández-Ortega J, Álvaro-Fuentes J, Cantero-Martínez C. 2024. Double-cropping, tillage and nitrogen fertilization effects on soil CO2 and CH4 emissions. AgricultureEcosystems & Environment359, 108758.

Fierer N, Lauber C L, Ramirez K S, Zaneveld J, Bradford M A, Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME Journal6, 1007–1017.

Grandy A S, Robertson G P. 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems10, 59–74.

Guo L B, Gifford R M. 2010. Soil carbon stocks and land use change: A meta analysis. Global Change Biology8, 345–360.

Halder M, Ahmad S J, Rahman T, Joardar J C, Siddique M A B, Islam M S, Islam M U, Liu S, Rabbi S, Peng X H. 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Regional32, e00620.

Huang M, Li Z W, Chen M, Wen J J, Luo N J, Xu W H, Ding X, Xing W L. 2020. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. Science of the Total Environment739, 140378.

Huang R, Tian D, Liu J, Lv S, He X H, Gao M. 2018. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. AgricultureEcosystems & Environment265, 576–586.

Huang W, Wu J F, Pan X H, Tan X M, Zeng Y J, Shi Q H, Liu T J, Zeng H Y. 2021. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture20, 236–247.

Hütsch B W. 2001. Methane oxidation in non-flooded soils as affected by crop production - invited paper. European Journal of Agronomy14, 237–260.

IPCC (Intergovernmental Panel on Climate Change). 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES), Hayama.

Jawson M D, Elliott L F. 1986. Carbon and nitrogen transformations during wheat straw and root decomposition. Soil Biology & Biochemistry18, 15–22.

Jenkinson D S, Hart P B S, Rayner J H, Parry L C. 1987. Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin15, 1–8.

Jenkinson D S, Harkness D D, Vance E D, Adams D E, Harrison A F. 1992. Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter. Soil Biology & Biochemistry24, 295–308.

Jian J S, Du X, Reiter M S, Stewart R D. 2020. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biology & Biochemistry143, 107735.

Jiang G Y, Xu M G, He X H, Zhang W J, Huang S M, Yang X J, Liu H, Peng C, Shirato Y, Iizumi T, Wang J Z, Murphy D V. 2014. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochemical Cycle28, 319–333.

Kaye J P, Quemada M. 2017. Using cover crops to mitigate and adapt to climate change. A review. Agronomy for Sustainable Development37, 4.

Kemper W D, Rosenau R C. 1986. Aggregate stability and size distribution. In: Klute A, ed., Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Soil Science Society of America, Madison, WI. pp. 425–442.

Kirkby C A, Fattore A. 2006. Effect of Rice Stubble Burning Versus Retention on Soil Health. Irrigation Research and Extension Committee, Queensland, Australia.

Kozjek K, Manoharan L, Urich T, Ahrén D, Hedlund K. 2023. Microbial gene activity in straw residue amendments reveals carbon sequestration mechanisms in agricultural soils. Soil Biology & Biochemistry179, 108994.

Kumar A, Kushwaha K K, Singh S, Shivay Y S, Meena M C, Nain L. 2019. Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. Environmental Technology & Innovation16, 100469.

Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biology & Biochemistry83, 184–199.

Lal R, Follett R F, Stewart B A, Kimble J M. 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science172, 943–956.

Lavallee J M, Soong J L, Cotrufo M F. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology26, 261–273.

Li H W, Wu Y P, Liu S G, Xiao J F, Zhao W Z, Chen J, Alexandrov G, Cao Y. 2022. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Global Change Biology28, 3394–3410.

Li S M, Li J M, Li C S, Huang S M, Li X Y, Li S X, Ma Y B. 2016. Testing the RothC and DNDC models against long-term dynamics of soil organic carbon stock observed at cropping field soils in North China. Soil & Tillage Research163, 290–297.

Li Y, Li Z, Cui S, Liang G P, Zhang Q P. 2021. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective. Soil & Tillage Research205, 104758.

Li Z G, Zhang R H, Wang X J, Wang J P, Zhang C P, Tian C Y. 2011. Carbon dioxide fluxes and concentrations in a cotton field in Northwestern China: Effects of plastic mulching and frip irrigation. Pedosphere21, 178–185.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105–17110.

Lin H Y, Zhou M H, Zeng F R, Xu P, Ma S L, Zhang B W, Li Z Y, Wang Y Q, Zhu B. 2022. How do soil organic carbon pool, stock and their stability respond to crop residue incorporation in subtropical calcareous agricultural soils? AgricultureEcosystems & Environment332, 107927.

Lu J S, Hu T Y, Zhang B C, Wang L, Yang S H, Fan J L, Yan S C, Zhang F C. 2021. Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China. Agricultural Water Management247, 106739.

Lupwayi N Z, Arshad M A, Rice W A, Clayton G W. 2001. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management. Applied Soil Ecology16, 251–261.

Ma L J, Lv X B, Cao N, Wang Z, Zhou Z G, Meng Y L. 2021. Alterations of soil labile organic carbon fractions and biological properties under different residue-management methods with equivalent carbon input. Applied Soil Ecology161, 103821.

Ma T, Zhu S S, Wang Z H, Chen D M, Dai G H, Feng B W, Su X Y, Hu H F, Li K H, Han W X, Liang C, Bai Y F, Feng X J. 2018. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications9, 3480–3488.

Martin G, Durand J L, Duru M, Gastal F, Julier B, Litrico I, Louarn G, Médiène S, Moreau D, Morison M V, Novak S, Parnaudeau V, Paschalidou F, Vertès F, Voisin A S, Cellier P, Jeuffroy M H. 2020. Role of ley pastures in tomorrow’s cropping systems. A review. Agronomy for Sustainable Development40, 17.

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria URL.

Mi W H, Wu L H, Brookes P C, Liu Y L, Zhang X, Yang X. 2016. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil & Tillage Research163, 64–70.

Niu Y L, Li Y, Lou M X, Cheng Z, Ma R J, Guo H, Zhou J, Jia H T, Fan L C, Wang T C. 2024. Microbial transformation mechanisms of particulate organic carbon to mineral-associated organic carbon at the chemical molecular level: Highlighting the effects of ambient temperature and soil moisture. Soil Biology & Biochemistry, 195, 109454.

Nguyen M N. 2020. Worldwide bans of rice straw burning could increase human arsenic exposure. Environmental Science and Technology54, 3728–3729.

Oksanen J, Blanchet F G, Kindt R, Legendre P, Wagner H. 2013. Vegan: Community Ecology R Package, v2.0–10. [2023-1-27]. http://CRAN. R-project. org/package= vegan.

Park S, Yang H, Park H, Seo B, Jeong Y, Lim S, Kwak J, Kim H, Yoon K, Lee S, Choi W. 2021. Rice straw cover decreases soil erosion and sediment-bound C, N, and P losses but increases dissolved organic C export from upland maize fields as evidenced by δ13C. Science of the Total Environment753, 142053.

Powlson D S, Bhogal A, Chambers B J, Coleman K, Macdonald A J, Goulding K W T, Whitmore A P. 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. AgricultureEcosystems & Environment146, 23–33.

Powlson D S, Stirling C M, Thierfelder C, White R P, Jat M L. 2016. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? AgricultureEcosystems & Environment220, 164–174.

Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste J C, Grünzweig J M, Reth S, Subke J A, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, et al. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology123, 159–176.

Qiang S C, Zhang Y, Fan J L, Zhang F C, Xiang Y Z, Yan S C, Wu Y. 2019. Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China. Agricultural Water Management213, 996–1003.

Rabbi S M F, Minasny B, McBratney A B, Young I M. 2020. Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma360, 114033.

Reicosky D C, Reeves D W, Prior S A, Runion G B, Rogers H H, Raper R L. 1999. Effects of residue management and controlled traffic on carbon dioxide and water loss. Soil & Tillage Research52, 153–165.

Riggers C, Poeplau C, Don A, Frühauf C, Dechow R. 2021. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant and Soil460, 417–433.

Sainju U M, Allen B A, TonThat T C, Lenssen A W. 2015. Dryland soil carbon and nitrogen after thirty years of tillage and cropping sequence combination. Agronomy Journal107, 1822–1830.

Sanderman J, Hengl T, Fiske G J. 2017. Soil carbon debt of 12,000 years of human land use. Proceedlings of the National Academy of Sciences of the United States of America114, 9575–9580.

Sass R L, Fisher F M, Harcombe P A. 1991. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw. Global Biogeochemical Cycles5, 275–287.

Sawicka K, Clark J M, Vanguelova E, Monteith D T, Wade A J. 2021. Spatial properties affecting the sensitivity of soil water dissolved organic carbon long-term median concentrations and trends. Science of the Total Environment780, 146670.

Six J, Elliott E, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry32, 2099–2103.

Shi X, Zhang X, Yang X, Drury C F, Mclaughlin N B, Liang A, Fan R, Jia S. 2012. Contribution of winter soil respiration to annual soil CO2 emission in a Mollisol under different tillage practices in northeast China. Global Biogeochemical Cycles26, GB2007.

Toussaint A, Charpin N, Brosse S, Villéger S. 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports6, 22125.

Wang J, Lu C, Xu M, Zhu P, Huang S, Zhang W, Peng, C, Chen X, Wu L. 2013. Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Soil Use and Management29, 182–190.

Wang X J, Wang J Y, Wang J P. 2021. Seasonality of soil respiration under gypsum and straw amendments in an arid saline-alkali soil. Journal of Environmental Management277, 111494.

Welles J M, Demetriades-Shah T H, McDermitt D K. 2001. Considerations for measuring ground CO2 effluxes with chambers. Chemical Geology177, 3–13.

Wright A L, Hons F M. 2005. Carbon and nitrogen sequestration and soil aggregation under sorghum cropping sequences. Biology and Fertility of Soils41, 95–100.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass C by fumigation–extraction - an automated procedure. Soil Biology & Biochemistry22, 1167–1169.

Wu L, Zhang W J, Wei W J, He Z L, Hu R G. 2019. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology & Biochemistry135, 383–391.

Wu X, Nguyen S T, Sun Z, Wantanabe T, Tawaraya K, Hu R G, Cheng W G. 2020. Soil organic matter dynamics as affected by land use change from rice paddy to wetland. Wetlands40, 2199–2207.

Yang C, Liu N, Zhang Y J M. 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma337, 444–452.

Yang X Y, Ren W D, Sun B H, Zhang S L. 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma177–178, 49–56.

Youker R E, Mcguinness J L. 1956. A short method of obtaining mean weight diameter values of aggregate analyses of soils. Soil Science83, 291–294.

Yuan G Y, Huan W W, Song H, Lu D J, Chen X Q, Wang H Y, Zhou J M. 2021. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil & Tillage Research209, 104958.

Zhang W J, Munkholm L J, Liu X, An T T, Xu Y D, Ge Z, Xie N H, Li A M, Dong Y Q, Peng C, Li S Y, Wang J K. 2023. Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: Evidence from one-year field experiment. Geoderma430, 116324.

Zhang Y J, Zou J L, Osborne B, Dai W, Xu Y, Ren Y Y, Dang S N, Wang L J, Chen X, Yu Y. 2023. Effect of straw return on soil respiration in dryland agroecosystem of China: A meta-analysis. Ecological Engineering196, 107099.

Zhao Y W. 2017. RothC model simulation of soil organic carbon on farmland crop residue in North China. Ph D thesis. Chinese Academy of Agricultural Sciences, China. (in Chinese)

Zhou M H, Zhu B, Butterbach-Bahl K, Wang X G, Zheng X H. 2014. Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in southwest China. Plant and Soil383, 401–414.

[1] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[2] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[3] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[4] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[5] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[6] ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 521-531.
[7] LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3611-3625.
[8] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[9] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[10] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
[11] WANG Shi-chao, ZHAO Ya-wen, WANG Jin-zhou, ZHU Ping, CUI Xian, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai . The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland[J]. >Journal of Integrative Agriculture, 2018, 17(2): 436-448.
[12] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
[13] LIU Hai-long, LIU Hong-bin,LEI Qiu-liang, ZHAI Li-mei, WANG Hong-yuan, ZHANG Ji-zong, ZHU Yeping, LIU Sheng-ping, LI Shi-juan, ZHANG Jing-suo, LIU Xiao-xia. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2300-2307.
[14] LI Hui, FENG Wen-ting, HE Xin-hua, ZHU Ping, GAO Hong-jun, SUN Nan, XU Ming-gang . Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain[J]. >Journal of Integrative Agriculture, 2017, 16(04): 937-946.
[15] YE Hui-chun, HUANG Yuan-fang, CHEN Peng-fei, HUANG Wen-jiang, ZHANG Shi-wen, HUANG Shan-yu, HOU Sen. Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing, China[J]. >Journal of Integrative Agriculture, 2016, 15(4): 918-928.
No Suggested Reading articles found!