Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (12): 3611-3625    DOI: 10.1016/j.jia.2022.08.072
Special Issue: 农业生态环境-有机碳与农业废弃物还田合辑Agro-ecosystem & Environment—SOC
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management

LI Teng-teng1, 2, ZHANG Jiang-zhou3, 2*, ZHANG Hong-yan2, Chrisite PHRISITE2, ZHANG Jun-ling2

1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R.China

2 College of Resources and Environmental Sciences/National Academy of Agriculture Green Development/Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, P.R.China

3 College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

免耕和秸秆还田均影响土壤有机碳含量和组分。然而,免耕和秸秆还田对土壤有机碳库变化的影响有待进一步研究。本研究选择华北平原11长期定位试验试验主处理为免耕(NT)和常规耕作(CT),副处理为秸秆不还田(S0)、仅小麦秸秆还田(S1)和小麦玉米秸秆均还田(S2),揭示耕作和秸秆还田对土壤有机碳数量和质量的影响分析不同管理模式下土壤有机碳及其不稳定性组分(颗粒有机碳、高锰酸钾氧化性有机碳、微生物量碳和可溶性有机碳)含量,利用荧光光谱结合平行因子分析可溶性有机碳组成,采用13C核磁共振技术分析土壤有机碳化学结构。结果表明,秸秆还田显著增加了0-20 cm土层土壤有机碳含量和储量,但免耕对其仅起到层化作用,即与常规耕作相比,免耕增加了0-10 cm土层有机碳含量和储量,降低了10-20 cm土层有机碳含量和储量,这种现象在小麦玉米秸秆均还田条件下(S2)条件下更加明显。不稳定性有机碳组分变化趋势与土壤有机碳相似,其中颗粒有机碳和高锰酸钾氧化性有机碳对秸秆还田较为敏感,而前者对耕作更为敏感。可溶性有机碳六个荧光组分主要包括腐殖质类物质和少量的富里酸类物质和色氨酸。秸秆还田显著降低了荧光指数(FI)和自生源指数(BIX),但增加了腐殖化指数(HIX)在小麦玉米均还田条件下(S2),免耕显著增加上层HIX和下层BIXFI。土壤有机碳化学结构表现为氧烷基碳>烷基碳>芳香碳>羧基碳。综上所述,在小麦和玉米秸秆均还田条件下,免耕增加了上层土壤有机碳含量及其不稳定性有机碳组分、可溶性有机碳的腐殖化程度和下层微生物驱动的可溶性有机碳。小麦玉米秸秆均还田是增加耕层土壤有机碳有效管理措施,免耕对上层和下层土壤有机碳层的差异变化可能对碳固持具有长期的影响。



Abstract  

No tillage (NT) and straw return (S) collectively affect soil organic carbon (SOC).  However, changes in the organic carbon pool have been under-investigated.  Here, we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.  Concentrations of SOC and its labile fractions (particulate organic carbon (POC), potassium permanganate-oxidizable organic carbon (POXC), microbial biomass carbon (MBC) and dissolved organic carbon (DOC)), components of DOC by fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and the chemical composition of SOC by 13C NMR spectroscopy were explored.  Treatments comprised conventional tillage (CT) and NT under no straw return (S0), return of wheat straw only (S1) or return of both wheat straw and maize residue (S2).  Straw return significantly increased the concentrations and stocks of SOC at 0-20 cm depth but no tillage stratified them with enrichment at 0-10 cm and a decrease at 10-20 cm in comparison to CT, especially under S2.  Labile C fractions showed similar patterns of variation to that of SOC, with POC and POXC more sensitive to straw return and the former more sensitive to tillage.  Six fluorescence components of DOC were identified comprising mostly humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan. Straw return significantly decreased the fluorescence index (FI) and autochthonous index (BIX) and increased the humification index (HIX).  No tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.  The chemical composition of SOC was: O-alkyl C>alkyl-C>aromatic-C>carbonyl-C.  Overall, NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.  Return of both wheat and maize straw was a particularly strong factor for promoting soil organic carbon in the plough layer, and the stratification of SOC under no tillage may confer long-term influence on carbon sequestration.

Keywords:  soil organic carbon        labile C fractions       EEM fluorescence       PARAFAC analysis       13C NMR spectrometry  
Received: 27 October 2019   Accepted: 05 January 2022
Fund: 

The authors gratefully acknowledge funding from the National Basic Research Program of China (2015CB150500).


About author:  Correspondence ZHANG Jiang-zhou, Tel: +86-591-86396189, E-mail: zjzky2010@163.com

Cite this article: 

LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling. 2022. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management. Journal of Integrative Agriculture, 21(12): 3611-3625.

Alcántara V, Don A, Well R, Nieder R. 2016. Deep ploughing increases agricultural soil organic matter stocks. Global Change Biology, 22, 2939–2956.
Assunção S A, Pereira M G, Rosset J S, Berbara R L L, García A C. 2019. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658, 901–911. 
Bai X, Huang Y, Ren W, Coyne M, Jacinthe P A, Tao B, Hui D, Yang J, Matocha C. 2019. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global Change Biology, 25, 2591–2606. 
Baldock J A, Oades J M, Nelson P N, Skene T M, Golchin A, Clarke P. 1997. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Soil Research, 35, 1061–1083. 
Baldock J A, Oades J M, Waters A G, Peng X, Vassallo A M, Wilson M A. 1992. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry, 16, 1–42. 
Baldock J A, Skjemstad J O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31, 697–710.
Berhane M, Xu M, Liang Z, Shi J, Wei G, Tian X. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology, 26, 2686–2701. 
Bimüller C, Mueller C W, von Lützow M, Kreyling O, Kölbl A, Haug S, Schloter M, Kögel-Knabner I. 2014. Decoupled carbon and nitrogen mineralization in soil particle size fractions of a forest topsoil. Soil Biology & Biochemistry, 78, 263–273.
Birdwell J E, Engel A S. 2010. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 41, 270–280. 
Bongiorno G, Bünemann E K, Oguejiofor C U, Meier J, Gort G, Comans R, Mäder P, Brussaard L, de Goede R. 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50. 
Bossio D A, Cook-Patton S C, Ellis P W, Fargione J, Sanderman J, Smith P, Wood S, Zomer R J, von Unger M, Emmer I M, Griscom B W. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391–398. 
Cambardella C A, Elliott E T. 1993. Methods for physical separation and characterization of soil organic matter fractions. Geoderma, 56, 449–457. 
Chan K Y, Heenan D P, Oates A. 2002. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil & Tillage Research, 63, 133–139. 
Chantigny M H. 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma, 113, 357–380. 
Chappell A, Baldock J, Sanderman J. 2016. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nature Climate Change, 6, 187–191.
Chen H, Hou R, Gong Y, Li H, Fan M, Kuzyakov Y. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil & Tillage Research, 106, 85–94. 
Chen H, Zhou J, Xiao B. 2010. Characterization of dissolved organic matter derived from rice straw at different stages of decay. Journal of Soils and Sediments, 10, 915–922. 
Chen S, Zhang X, Shao L, Sun H, Niu J, Liu X. 2020. Effects of straw and manure management on soil and crop performance in North China Plain. Catena, 187, 104359. 
CSB (China Statistics Bureau). 2018. China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)
Denef K, Zotarelli L, Boddey R M, Six J. 2007. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology & Biochemistry, 39, 1165–1172. 
Dignac M F, Bahri H, Rumpel C, Rasse D P, Bardoux G, Balesdent J, Girardin C, Chenu C, Mariotti A. 2005. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: An appraisal at the Closeaux experimental field (France). Geoderma, 128, 3–17. 
Dikgwatlhe S B, Kong F L, Chen Z D, Lal R, Zhang H L, Chen F. 2014. Tillage and residue management effects on temporal changes in soil organic carbon and fractions of a silty loam soil in the North China Plain. Soil Use and Management, 30, 496–506. 
Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, Cohan J. 2014. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agriculture, Ecosystems & Environment, 188, 134–146. 
Du Z, Angers D A, Ren T, Zhang Q, Li G. 2017a. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis.  Agriculture, Ecosystems & Environment, 236, 1–11.
Du Z, Han X, Wang Y, Gu R, Li Y, Wang D, Yun A, Guo L. 2017b. Changes in soil organic carbon concentration, chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China. Canadian Journal of Soil Science, 98, 91–102.
Du Z, Ren T, Hu C. 2010. Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Science Society of America Journal, 74, 196–202. 
Duval M E, Galantini J A, Martínez J M, Limbozzi F. 2018. Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions. Catena, 171, 316–326. 
Fan J, Ding W, Xiang J, Qin S, Zhang J, Ziadi N. 2014. Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application. Geoderma, 230–231, 22–28. 
FAO. 2021. Conservation agriculture. [2021-12-24]. https://www.fao.org/conservation-agriculture/case-studies/china/en/.
Fellman J B, Hood E, Spencer R G M. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography, 55, 2452–2462. 
Ferreira C D, Neto E C D,  Pereira M G, Guedes J D, Rosset J S, dos Anjos L H C. 2020. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil & Tillage Research, 198, 104533. 
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280. 
Friedrich T, Derpsch R, Kassam A. 2012. Overview of the global spread of conservation agriculture. Field Actions Science Reports, 6, http://factsreports.revues.org/1941. 
Gao J, Lv J, Wu H, Dai Y, Nasir M. 2018. Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium-contaminated soils: Insights from fluorescence spectroscopy and environmental implications. Chemosphere, 193, 1027–1035. 
Gao L, Wang B, Li S, Han Y, Zhang X, Gong D, Ma M, Liang G, Wu H, Wu X, Cai D, Degré A. 2019. Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil & Tillage Research, 194, 104321. 
Gonçalves C N, Dalmolin R S D, Dick D P, Knicker H, Klamt E, Kögel-Knabner I. 2003. The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma, 116, 373–392. 
Guéguen C, Itoh M, Kikuchi T, Eert J, Williams W J. 2015. Variability in dissolved organic matter optical properties in surface waters in the Amerasian Basin. Frontiers in Marine Science, 2, 78. 
Guo Y, Fan R, Zhang X, Zhang Y, Wu D, McLaughlin N, Zhang S, Chen X, Jia S, Liang A. 2020. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Science of the Total Environment, 703, 134617. 
Guo Z, Zhang Z, Zhou H, Wang D, Peng X. 2019. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Scientific Reports, 9, 2505. 
Halvorson A D, Jantalia C P. 2011. Nitrogen fertilization effects on irrigated no-till corn production and soil carbon and nitrogen. Agronomy Journal, 103, 1423–1431. 
Han X, Xu C, Dungait J A J, Bol R, Wang X, Wu W, Meng F. 2018. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences, 15, 1933–1946. 
Hassink J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191, 77–87. 
Hatcher P G, Schnitzer M, Dennis L W, Maciel G E. 1981. Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45, 1089–1094. 
Haynes R J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advance in Agronomy, 85, 221–268. 
Hirte J, Leifeld J, Abiven S, Mayer J. 2018. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Research, 216, 197–208. 
Hu Y, Wang Z, Wang Q, Wang S, Zhang Z, Zhang Z, Zhao Y. 2017. Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. Journal of Soils and Sediments, 17, 326–339. 
Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40, 706–719. 
Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti E. 2010. New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Organic Geochemistry, 41, 595–610. 
Ishii S K L, Boyer T H. 2012. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environmental Science & Technology, 46, 2006–2017. 
Ji S N, Unger P W. 2001. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Science Society of America Journal, 65, 442–448. 
Jiang T, Kaal J, Liang J, Zhang Y, Wei S, Wang D, Green N W. 2017. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. Science of the Total Environment, 603–604, 461–471. 
Joergensen R G. 1996. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology & Biochemistry, 28, 25–31. 
Kan Z, He C, Liu Q, Liu B, Virk A L, Qi J, Zhao X, Zhang H. 2020a. Carbon mineralization and its temperature sensitivity under no-till and straw returning in a wheat–maize cropping system. Geoderma, 377, 114610. 
Kan Z, Ma S, Liu Q, Liu B, Virk A L, Qi J, Zhao X, Lal R, Zhang H. 2020b. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena, 188, 104428. 
Kölbl A, Kögel-Knabner I. 2004. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 167, 45–53. 
Kurganova I, Merino A, Lopes De Gerenyu V, Barros N, Kalinina O, Giani L, Kuzyakov Y. 2019. Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems. Geoderma, 354, 113882. 
Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. 
Lal R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation, 70, 55A–62A.
Lal R. 2016. Soil health and carbon management. Food Energy Security, 5, 212–222. 
Lei B, Fan M, Chen, Six J, Zhang F. 2010. Conversion of wheat–maize to vegetable cropping systems changes soil organic matter characteristics. Soil Science Society of America Journal, 74, 1320–1326. 
Li S, Li M, Wang G, Sun X, Xi B, Hu Z. 2019. Compositional and chemical characteristics of dissolved organic matter in various types of cropped and natural Chinese soils. Chemical and Biological Technologies in Agriculture, 6, 1–11. 
Li T, Zhang Y, Bei S, Li X, Reinsch S, Zhang H, Zhang J. 2020. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena, 194, 104739. 
Lorenz K, Lal R. 2016. Environmental impact of organic agriculture. Advances in Agronomy, 139, 99–152. 
Luo Z, Wang E, Sun O J. 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139, 224–231. 
Maie N, Scully N M, Pisani O, Jaffé R. 2007. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research, 41, 563–570. 
McKnight D M, Boyer E W, Westerhoff P K, Doran P T, Kulbe T, Andersen D T. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48. 
Minasny B, Malone B P, McBratney A B, Angers D A, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das B S, Field D J, Gimona A, Hedley C B, Hong S Y, Mandal B, Marchant B P, Martin M, McConkey B G, Mulder V L, O’Rourke S, et al. 2017. Soil carbon 4 per mille. Geoderma, 292, 59–86. 
Niu Y, Cai Y, Chen Z, Luo J, Di H J, Yu H, Zhu A, Ding W. 2019. No-tillage did not increase organic carbon storage but stimulated N2O emissions in an intensively cultivated sandy loam soil: A negative climate effect. Soil & Tillage Research, 195, 104419. 
Ogle S M, Alsaker C, Baldock J, Bernoux M, Breidt F J, McConkey B, Regina K, Vazquez-Amabile G G. 2019. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports, 9, 11665. 
Ogle S M, Swan A, Paustian K. 2012. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & Environment, 149, 37–49. 
Ohno T. 2002. Fluorescence Inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36, 742–746. 
Ohno T, He Z, Tazisong I A, Senwo Z N. 2009. Influence of tillage, cropping, and nitrogen source on the chemical characteristics of humic acid, fulvic acid, and water-soluble soil organic matter fractions of a long-term cropping system study. Soil Science, 174, 652–660. 
Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P. 2014. Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 187, 87–105.
Parlanti E, Wörz K, Geoffroy L, Lamotte M. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, 1765–1781. 
Pittelkow C M, Linquist B A, Lundy M E, Liang X, van Groenigen K J, Lee J, van Gestel N, Six J, Venterea R T, van Kessel C. 2015. When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. 
Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. 2014. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil & Tillage Research, 139, 19–22. 
Poeplau C, Don A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops - A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41.
Powlson D S, Stirling C M, Jat M L, Gerard B G, Palm C A, Sanchez P A, Cassman K G. 2014. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678–683. 
Pu C, Kan Z, Liu P, Ma S, Qi J, Zhao X, Zhang H. 2019. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. Journal of Integrative Agriculture, 18, 1337–1347. 
Ramírez P B, Calderón F J, Fonte S J, Santibáñez F, Bonilla C A. 2020. Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecological Indicators, 111, 106042. 
Romero C M, Engel R E, D’Andrilli J, Chen C, Zabinski C, Miller P R, Wallander R. 2017. Bulk optical characterization of dissolved organic matter from semiarid wheat-based cropping systems. Geoderma, 306, 40–49. 
Romero C M, Engel R E, D’Andrilli J, Miller P R, Wallander R. 2019. Compositional tracking of dissolved organic matter in semiarid wheat-based cropping systems using fluorescence EEMs-PARAFAC and absorbance spectroscopy. Journal of Arid Environments, 167, 34–42. 
Salve P R, Lohkare H, Gobre T, Bodhe G, Krupadam R J, Ramteke D S, Wate S R. 2012. Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 88, 215–218. 
Sanderman J, Hengl T, Fiske G J. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114, 9575–9580.
Sarker J R, Singh B P, Cowie A L, Fang Y, Collins D, Dougherty W J, Singh B K. 2018. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues. Soil Biology & Biochemistry, 116, 22–38.
Schmidt M P, Martínez C E. 2019. The influence of tillage on dissolved organic matter dynamics in a mid-Atlantic agroecosystem. Geoderma, 344, 63–73. 
Sharma P, Laor Y, Raviv M, Medina S, Saadi I, Krasnovsky A, Vager M, Levy G J, Bar-Tal A, Borisover M. 2017. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil. Geoderma, 286, 73–82. 
Shrestha B M, Singh B R, Forte C, Certini G. 2015. Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use and Management, 31, 358–366. 
Si P, Liu E, He W, Sun Z, Dong W, Yan C, Zhang Y. 2018. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. Archives of Agronomy and Soil Science, 64, 398–408. 
Simpson M J, Simpson A J. 2012. The chemical ecology of soil organic matter molecular constituents. Journal of Chemical Ecology, 38, 768–784. 
Six J, Elliott E T, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099–2103. 
Skjemstad J O, Swift R S, McGowan J A. 2006. Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon. Soil Research, 44, 255–263. 
Sun W, Canadell J G, Yu L, Yu L, Zhang W, Smith P, Fischer T, Huang Y. 2020. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26, 3188–3189.
Syswerda S P, Corbin A T, Mokma D L, Kravchenko A N, Robertson G P. 2011. Agricultural management and soil carbon storage in surface vs. deep layers. Soil Science Society of America Journal, 75, 92–101. 
Tao F, Palosuo T, Valkama E, Mäkipää R. 2019. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil & Tillage Research, 186, 70–78. 
Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.
Vieira F C B, Bayer C, Zanatta J A, Dieckow J, Mielniczuk J, He Z L. 2007. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil & Tillage Research, 96, 195–204. 
Wang J, Wang X, Xu M, Feng G, Zhang W, Lu C A. 2015. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 102, 371–381. 
Wang X, He C, Liu B, Zhao X, Liu Y, Wang Q, Zhang. 2020. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy, 10, 691. 
Weil R R, Islam K R, Stine M A, Gruver J B, Samson-Liebig S E. 2003. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3–17. 
Xu J, Han H, Ning T, Li Z, Lal R. 2019. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat–maize system. Field Crops Research, 233, 33–40. 
Xue J, Pu C, Zhao X, Wei Y, Zhai Y, Zhang X, Lal R, Zhang H. 2018. Changes in soil organic carbon fractions in response to different tillage practices under a wheat–maize double cropping system. Land Degradation & Development, 29, 1555–1564. 
Ye Y, Xiao S, Liu S, Zhang W, Zhao J, Chen H, Guggenberger G, Wang K. 2020. Tillage induces rapid loss of organic carbon in large macroaggregates of calcareous soils. Soil & Tillage Research, 199, 104549. 
Zhang B, Zhou X, Zhou L, Ju R. 2015. A global synthesis of below-ground carbon responses to biotic disturbance: A meta-analysis. Global Ecology and Biogeography, 24, 126–138. 
Zhang R, Huang Q, Yan T, Yang J, Zheng Y, Li H, Li M. 2019. Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the loess plateau. Journal of Environmental Management, 250, 109531. 
Zhang Y, Wang S, Wang H, Ning F, Zhang Y, Dong Z, Wen P, Wang R, Wang X, Li J. 2018. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat–spring maize rotations. Agricultural and Forest Meteorology, 263, 107–117. 
Zhao X, Liu S, Pu C, Zhang X, Xue J, Ren Y, Zhao X, Chen F, Lal R, Zhang H. 2017. Crop yields under no-till farming in China: A meta-analysis. European Journal of Agronomy, 84, 67–75. 
Zhao X, Xue J, Zhang X, Kong F, Chen F, Lal R, Zhang H. 2015. Stratification and storage of soil organic carbon and nitrogen as affected by tillage practices in the North China Plain. PLoS ONE, 10, e128873. 
Zheng C, Jiang Y, Chen C, Sun Y, Feng J, Deng A, Song Z, Zhang W. 2014. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions. The Crop Journal, 2, 289–296. 
Zhou Y, Hartemink A E, Shi Z, Liang Z, Lu Y. 2019. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647, 1230–1238. 
Zomer R J, Bossio D A, Sommer R, Vercho L V. 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7, 15554.

[1] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[2] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[3] ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 521-531.
[4] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[5] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[6] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
[7] WANG Shi-chao, ZHAO Ya-wen, WANG Jin-zhou, ZHU Ping, CUI Xian, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai . The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland[J]. >Journal of Integrative Agriculture, 2018, 17(2): 436-448.
[8] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
[9] LIU Hai-long, LIU Hong-bin,LEI Qiu-liang, ZHAI Li-mei, WANG Hong-yuan, ZHANG Ji-zong, ZHU Yeping, LIU Sheng-ping, LI Shi-juan, ZHANG Jing-suo, LIU Xiao-xia. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2300-2307.
[10] LI Hui, FENG Wen-ting, HE Xin-hua, ZHU Ping, GAO Hong-jun, SUN Nan, XU Ming-gang . Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain[J]. >Journal of Integrative Agriculture, 2017, 16(04): 937-946.
[11] YE Hui-chun, HUANG Yuan-fang, CHEN Peng-fei, HUANG Wen-jiang, ZHANG Shi-wen, HUANG Shan-yu, HOU Sen. Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing, China[J]. >Journal of Integrative Agriculture, 2016, 15(4): 918-928.
[12] LIAO Yan, WU Wen-liang, MENG Fan-qiao, LI Hu. Impact of agricultural intensification on soil organic carbon: A study using DNDC in Huantai County, Shandong Province, China[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1364-1375.
[13] CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu. Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1551-1560.
[14] LONG Pan, SUI Peng, GAO Wang-sheng, WANG Bin-bin, HUANG Jian-xiong, YAN Peng, ZOU Juan-xiu, YAN Ling-ling, CHEN Yuan-quan. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs[J]. >Journal of Integrative Agriculture, 2015, 14(4): 774-787.
[15] FAN Hong-zhu, CHEN Qing-rui, QIN Yu-sheng, CHEN Kun, TU Shi-hua, XU Ming-gang, ZHANG Wen-ju. Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2417-2425.
No Suggested Reading articles found!