Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 306-321    DOI: 10.1016/j.jia.2024.05.026
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon
Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou#, Yulong Zhang

College of Land and Environment, Shenyang Agricultural University/National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources/Key Laboratory of Arable Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China

 Highlights 
Organic fertilizer stimulates overall macro-aggregate ratio.
The highest SOC contents and aromatic-C concentrations are observed in OF and COF treatments.
The concentrations of Fe components are the highest in the macro-aggregates.
The increase of SOC, aromatic-C, and non-crystalline Fe concentrations in soil is the reason for improving soil aggregate stability.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
土壤有机碳(SOC)和氧化铁(Fe)是驱动土壤团聚体形成和稳定的重要因素。然而,在施用有机肥的设施土壤中,这些驱动因素的机制尚不清楚。我们在为期3年的田间试验中,研究影响设施土壤团聚体稳定性的因素。为了探讨有机肥对土壤团聚体的影响,我们共设四个处理:不施肥(CK);无机肥料(CF);有机肥(OF);无机和有机肥配施(COF)。施用有机肥显著提高了团聚体的稳定性,即提高了>0.25 mm粒级团聚体含量、平均重量直径和几何平均直径。OF和COF处理增加了SOC含量,特别是提高了>0.25 mm粒级团聚体中构成SOC的脂芳碳、芳香碳和多糖碳含量。施用有机肥显著增加了土壤和团聚体中游离氧化铁(Fed)、无定形氧化铁(Feo)和非晶态铁的含量。此外,非晶态铁与土壤和团聚体中的SOC含量呈正相关。非晶态铁和SOC均与>2mm粒级MWD呈正相关。总体而言,我们认为施用有机肥后土壤中SOC、芳香碳和非晶态铁含量的增加是提高土壤团聚体稳定性的原因。


Abstract  
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.  However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.  In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.  To explore the impact of organic fertilizer on soil aggregates, we established four treatments: no fertilization (CK); inorganic fertilizer (CF); organic fertilizer (OF); and combined application of inorganic and organic fertilizers (COF).  The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of >0.25 mm aggregate fractions.  OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in >0.25 mm aggregates.  Organic fertilizer application significantly increased the content of free Fe (Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.  Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.  Both non-crystalline Fe and SOC were significantly positively correlated with >2 mm mean weight diameter.  Overall, we believe that the increase of SOC, aromatic-C, and non-crystalline Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
Keywords:  organic fertilizer       soil aggregates        soil organic carbon        iron oxides        greenhouse soil  
Received: 11 January 2024   Accepted: 01 April 2024
Fund: 
This work was supported by the Shenyang Municipal Science and Technology Project, China (23-409-2-03), the Liaoning Provincial Department of Science and Technology Project, China (Z20230183), and the Liaoning Provincial Applied Basic Research Program, China
About author:  #Correspondence Hongtao Zou, E-mail: zht@syau.edu.cn

Cite this article: 

Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. 2025. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon. Journal of Integrative Agriculture, 24(1): 306-321.

Abiven S, Menasseri S, Chenu C. 2009. The effects of organic inputs over time on soil aggregate stability - a literature analysis. Soil Biology and Biochemistry41, 1–12.

An T T, Schaeffer S, Zhuang J, Radosevich M, Li S Y, Li H, Pei J B, Wang J K. 2015. Dynamics and distribution of 13C labeled straw carbon by microorganisms as affected by soil fertility levels in the Black soil region of Northeast China. Biology and Fertility of Soils51, 605–613.

Barral M T, Arias M, Guérif J. 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil & Tillage Research46, 261–272

Blake G R, Hartge K H. 1986. Bulk density. In: Klute A ed., Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy–Soil Science Society of America, Madison. pp. 363–382.

Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma124, 3–22.

Christensen B T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science52, 345–353.

Craswell E T, Saffigna P G, Waring S A. 1970. The mineralization of organic nitrogen in dry soil aggregates of different sizes. Plant and Soil33, 383–392.

Dai H C, Chen Y Q, Liu K C, Li Z X, Qian X, Zang H D, Yang X L, Zhao Y X, Shen Y S, Li Z J, Sui P. 2019. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. Journal of Cleaner Production212, 393–400.

Ding L J, Su J Q, Xu H J, Jia Z J, Zhu Y G. 2015. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME Journal9, 721–734.

Dorodnikov M, Blagodatskaya E, Blagodatsky S, Fangmeier A, Kuzyakov Y. 2009. Stimulation of r-vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiology Ecology69, 43–52.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal50, 627–633.

Eusterhues K, Rumpel C, Kögel K I. 2010. Organo-mineral associations in sandy acid forest soils: Importance of specific surface area, iron oxides and micropores. European Journal of Soil Science56, 753–763.

Feng S, Huang Y, Ge Y, Su Y, Xu X, Wang Y, He X. 2016. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate. Science of the Total Environment571, 615–623.

Fernández-Getino A P, Hernández Z, Piedra B A, Almendros G. 2010. Assessment of the effects of environmental factors on humification processes by derivative infrared spectroscopy and discriminant analysis. Geoderma158, 225–232.

Goldberg S. 1987. Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorilloinite. Clays and Clay Minerals35, 220–227.

Grube M, Lin J G, Lee P H, Kokorevicha S. 2006. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma130, 324–333.

Han L F, Sun K, Jin J, Xing B S. 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry94, 107–121.

Hansen V, Müller-Stöver D, Munkholm L J, Peltre C, Hauggaard N H, Jensen L S. 2016. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma269, 99–107.

He Y T, Zhang W J, Xu M G, Tong X G, Sun F X, Wang J Z, Huang S M, Zhu P, He X H. 2015. Long-term combined inorganic and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment532, 635–644.

Huang R, Lan M L, Liu J, Gao M. 2017. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science and Pollution Research24, 1–11.

Iqbal J, Hu R, Feng M, Lin SMalghani SAli I M. 2010. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agriculture Ecosystems & Environment137, 294–307.

Kabiri V, Raiesi F, Ghazavi M A. 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil and Tillage Research154, 114–125.

Kang Y, An X, Ma Y, Zeng S, . 2021. Organic amendments alleviate early defoliation and increase fruit yield by altering assembly patterns and of microbial communities and enzymatic activities in sandy pear (Pyrus pyrifolia). AMB Express11, 164.

Karami A, Homaee M, Afzalinia S, Hassan R, Sanaz B. 2011. Organic resource management: Impacts on soil aggregate stability and other soil physico-inorganic properties. Agriculture Ecosystems & Environment148, 22–28.

Krause L, Klumpp E, Nofz I, Missong A, Amelung W, Siebers N. 2020. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma374, 114421.

Li H, Han X, Wang F, Qiao Y, B. 2007. Impact of soil management on organic carbon content and aggregate stability. Communications in Soil Science and Plant Analysis38, 1673–1690.

Li J, Wu H J, Wu X P, Cai D X, Yao Y Q, Lu J J, Zheng K, Liu Z P. 2015. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents. Journal of Plant Nutrition21, 378–386.

Liang Q, Chen H, Gong Y, Yang H, Fan M, Kuzyakov Y. 2014. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. European Journal of Soil Biology60, 112–119.

Lim S L, Wu T Y, Clarke C, Lim P N, Shak K P Y. 2014. The use of vermicompost in organic farming: Overview, effects on soil and economics. Journal of the Science of Food and Agriculture62, 691–698.

Liu S B, Razavi B S, Su X, Maharjan M, Zarebanadkouki M, Blagodatskaya E, Kuzyakov Y. 2017. Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms. Soil Biology & Biochemistry112, 100–109.

Mazurak A P. 1950. Effect of gaseous phase on water-stable synthetic aggregates. Soil Science69, 135–148.

McKeague J A. 1967. An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian Journal of Soil Science47, 95–99.

McKeague J A, Day J H. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science46, 13–22.

Memon M, Memon K S, Akhtar M S, Stuben D. 2009. Characterization and quantification of iron oxides occurring in low concentration in soils. Communications in Soil Science and Plant Analysis40, 162–117.

Nguyen T, Janik L, Raupach M. 1991. Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies. Australian Journal of Soil Research29, 49–67.

Oades J M, Waters A G. 1991. Aggregate hierarchy in soils. Soil Research29, 815–828.

Olsen S R, Sommers L E. 1982. Phosphorus Soluble in Sodium Bicarbonate. 2nd ed. Agronomy Monographs, Madison. pp. 403–430.

Peng X, Yan X, Zhou H, Zhang Y Z, Sun H. 2015. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil and Tillage Research146, 89–98.

Puttaso A, Vityakon P, Rasche F, Saenjan P, Treloges V, Cadisch G. 2013. Does organic residue quality influence carbon retention in a tropical sandy soil? Soil Science Society of America Journal77, 1001–1011.

Šimanský V, Juriga M, Jonczak J, Uzarowicz Ł, Stępien W. 2019. How relationships between soil organic matter parameters and soil structure characteristics are acted by the long-term fertilization of a sandy soil. Geoderma342, 75–84.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research79, 7–31.

Six J, Paustian K, Elliott E T, Combrink C. 2000. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal64, 681–689.

Sodhi G P S, Beri V, Benbi D K. 2008. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil and Tillage Research103, 412–418.

Sun Q, Yang X, Meng J, Lan Y, Han X R, Chen W F. 2022. Long-term effects of straw and straw-derived biochar on humic substances and aggregate-associated humic substances in brown earth soil. Frontiers in Environmental Science10, 899935.

Tan K H. 2005. Soil SamplingPreparationand Analysis. 2ed. CRC Press, Boca Raton. pp. 24–30.

Tang H M, Xiao X P, Li C, Wang K, Guo L J, Cheng K K, Sun G, Pan X C. 2018. Impact of long-term fertilization practices on the soil aggregation and humic substances under double-cropped rice fields. Environmental Science and Pollution Research25, 11034–11044.

Tian S Y, Zhu B J, Yin R, Wang M W, Jiang Y J, Zhang C Z, Li D M, Chen X Y, Kardol P, Liu M Q. 2022. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology & Biochemistry165, 108533.

Torn M S, Trumbore S E, Chadwick O A, Vitousek P M, Hendricks D M. 1997. Mineral control of soil organic carbon storage and turnover. Nature389, 170–173.

Vanavel C H M. 1949. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal14, 20–23.

Wagai R, Mayer L. 2007. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta71, 25–35.

Wang C, Pan Y Y, Zhang Z M, Xiao R, Zhang M X. 2021. Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. Science of the Total Environment777, 145852.

Wang P, Wang J D, Zhang H, Dong Y, Zhang Y C. 2019. The role of iron oxides in the preservation of soil organic matter under long-term fertilization. Journal of Soils and Sediments19, 588–598.

Wen Y L, Xiao J, Liu F F, Goodman B A, Li W, Jia Z J, Ran W, Zhang R F, Shen Q R, Yu G H. 2018. Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils. Soil Biology & Biochemistry117, 56–67.

Wu S, Nguyen T A H, Liu Y, Southam G, Wang S, Chan T S, Lu Y R, Huang L. 2019. Deficiencies of secondary Fe (oxy)hydroxides associated with phyllosilicates and organic carbon limit the formation of water-stable aggregates in
Fe-ore tailings. Chemical Geology523, 73–87.

Xiao J, Wen Y L, Li H, Hao J L, Shen Q R, Ran W, Mei X L, He X H, Yu G H. 2015. In situ visualisation and characterisation of the capacity of highly reactive minerals to preserve soil organic matter (SOM) in colloids at submicron scale. Chemosphere138, 225–232.

Xue B, Huang L, Huang Y N, Yin Z Y, Li X K, Lu J W. 2019. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping system. Catena177, 1–12.

Yakov K. 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry42, 1363–1371.

Yang S H. 2018. Investigation on the status of protected vegetable fertilizer application and soil fertilizer in Liaoning Province. MSc thesis, Shenyang Agricultural University, China. (in Chinese)

Yu G H, Xiao J, Hu S J, Polizzotto M L, Zhao F J, Mcgrath S P, Li H, Ran W, Shen Q R. 2017. Mineral availability as a key regulator of soil carbon storage. Environmental Science and Technology51, 4960–4969.

Yu H Y, Ding W X, Luo J F, Geng R, Cai Z. 2012. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research124, 170–177.

Zeraatpisheh M, Garosi Y, Owliaie H R, Ayoubi S, Taghizadeh M R, Scholten T, Xu M. 2022. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena208, 105723.

Zhang J, Wei Y, Liu J, Yuan J, Liang Y, Ren J, Cai H. 2019. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil and Tillage Research190, 1–9.

Zhang S, Cui J W, Wu H, Zheng Q, Song D, Wang X B, Zhang S Q. 2021. Organic carbon, total nitrogen, and microbial community distributions within aggregates of calcareous soil treated with biochar. Agriculture Ecosystems & Environment314, 107408–107432.

Zhu L X, Zhang F L, Li L L, Liu T X. 2021. Soil C and aggregate stability were promoted by bio-fertilizer on the North China Plain. Soil Science and Plant Nutrition21, 2355–2363.

[1] Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3159-3173.
[2] Lichao Zhai, Lihua Zhang, Yongzeng Cui, Lifang Zhai, Mengjing Zheng, Yanrong Yao, Jingting Zhang, Wanbin Hou, Liyong Wu, Xiuling Jia.

Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1179-1194.

[3] Junyu Xie, Jianyong Gao, Hanbing Cao, Jiahui Li, Xiang Wang, Jie Zhang, Huisheng Meng, Jianping Hong, Tingliang Li, Minggang Xu. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China[J]. >Journal of Integrative Agriculture, 2024, 23(3): 1034-1047.
[4] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[5] CHENG Wan-li, ZENG Li, YANG Xue, HUANG Dian, YU Hao, CHEN Wen, CAI Min-min, ZHENG Long-yu, YU Zi-niu, ZHANG Ji-bin. Preparation and efficacy evaluation of Paenibacillus polymyxa KM2501-1 microbial organic fertilizer against root-knot nematodes[J]. >Journal of Integrative Agriculture, 2022, 21(2): 542-551.
[6] ZHANG Mei-jun, JIA Ju-qing, LU Hua, FENG Mei-chen, YANG Wu-de. Functional diversity of soil microbial communities in response to supplementing 50% of the mineral N fertilizer with organic fertilizer in an oat field[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2255-2264.
[7] Saeed Reza Hosseinzadeh, Hamzeh Amiri, Ahmad Ismaili. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2426-2437.
[8] DAI Shen-yan, WANG Jing, CHENG Yi, ZHANG Jin-bo, CAI Zu-cong. Effects of long-term fertilization on soil gross N transformation rates and their implications[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2863-2870.
No Suggested Reading articles found!