Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1671-1687    DOI: 10.1016/j.jia.2024.09.017
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton

Teame Gereziher Mehari1*, Marijana Skorić2*, Hui Fang1, Kai Wang1, Fang Liu3, Tesfay Araya4, Branislav Šiler2, Dengbing Yao1#, Baohua Wang1#

1 School of Life Sciences, Nantong University, Nantong 226019, China

2 Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11108, Serbia 

3 State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

4 Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

 Highlights 
Cotton glands were responsible for the accumulation of gossypol in cottonseeds.
Hemigossypol the final constituent of gossypol was downregulated after gene silencing.  
GhCYP and GhTPS are involved in the regulation of gossypol biosynthetic pathway.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究以一对棉花近等基因系中棉所12有腺体和中棉所12无腺体为材料,通过转录组测序确定与棉酚生物合成相关的潜在基因和代谢途径。我们发现了超过2.35亿个clean reads1184个差异表达基因(differentially expressed genes,DEGs)。随后,我们进行了加权基因共表达网络分析,发现含有GhTPSGH_D09G0090)和GhCYPGH_D05G2016枢纽基因的白色和黄色模块与棉酚含量有很强的相关性。使用RT-qPCR、病毒诱导的基因沉默(virus-induced gene silencing,VIGS)和靶代谢产物分析证明了GhTPSGhCYP基因的重要性。与野生型相比,这些基因的沉默导致感染两周后叶片和茎上的腺体减少。此外,通过靶向代谢物分析共鉴定出152种代谢物。差异代谢产物筛选显示,与对照组相比,TRV:GhTPSTRV:GhCYP中分别有12种和18种显著不同的代谢产物与对照组比较,代谢产物的积累减少。靶代谢产物分析表明,棉酚生物合成的最终产物半棉酚的含量也降低了,这表明这些基因在棉酚生物合成途径中发挥了作用。此外,记录到有腺体和无腺体品系之间棉酚含量存在显著差异。本研究的结果揭示了棉酚含量与GhTPSGhCYP枢纽基因之间的密切联系,表明它们在棉酚生物合成途径中的作用是减少半棉酚的积累,这可能为棉花棉酚生物合成通路的调控检查点提供新的理解。



Abstract  

Two cotton research institute (CRI) near-isogenic lines, CRI-12 glanded and CRI-12 glandless, were used to pinpoint potential genes and metabolic pathways linked to gossypol biosynthesis through transcriptome sequencing.  We discovered more than 235 million clean reads and 1,184 differentially expressed genes (DEGs).  Consecutively, we conducted a weighted gene co-expression network analysis and found a strong correlation between white and yellow modules containing GhTPS (GH_D09G0090) and GhCYP (GH_D05G2016) hub genes with the gossypol content.  Importance of the GhTPS and GhCYP genes was demonstrated using RT-qPCR, virus-induced gene silencing (VIGS), and target metabolite analysis.  Silencing these genes resulted in fewer glands on both leaves and stems two weeks after the infection compared to the wild type.  In addition, 152 metabolites were identified through targeted metabolite profiling.  Differential metabolite screening revealed 12 and 18 significantly different metabolites in TRV:GhTPS and TRV:GhCYP plants vs. the control group, respectively, showing a reduction in the accumulation of metabolites compared to the control.  Content of hemigossypol, the final product of gossypol biosynthesis, was also reduced, as revealed by target metabolite analysis, suggesting the role of these genes in the gossypol biosynthetic pathway.  Furthermore, a highly significant difference in gossypol content between the glanded and glandless lines was recorded.  Findings of this study reveal a strong link between the gossypol content and GhTPS and GhCYP hub genes, suggesting their role in the gossypol biosynthetic pathway to reduce the accumulation of hemigossypol, which may offer new comprehension into the regulatory checkpoints of the gossypol biosynthesis pathway in cotton.

 

Keywords:  cotton       gossypol        near-isogenic lines        transcriptome        target metabolomics        correlation  
Received: 28 May 2024   Online: 24 September 2024   Accepted: 02 July 2024
Fund: 

We appreciate financial help from the National Key R&D Program of China (2021YFE0101200), the Key Research and Development Project of Jiangsu Province, China (Modern Agriculture, BE2022364), the State Key Laboratory of Cotton Bio-breeding and Integrated Utilization Open Fund, China (CB2024A06).  We appreciate the support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (451-03-66/2024-03/200007).

About author:  Teame Gereziher Mehari, E-mail: fiamieta21@gmail.com; Marijana Skorić, E-mail: mdevic@ibiss.bg.ac.rs; #Correspondence Baohua Wang, E-mail: bhwang@ntu.edu.cn; Dengbing Yao, E-mail: yaodb@ntu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. 2025. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton. Journal of Integrative Agriculture, 24(5): 1671-1687.

Anders S, Pyl P T, Huber W. 2015. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics31, 166–169.

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. Nature Genetics25, 25–29.

Benedict C R, Liu J, Stipanovic R D. 2006. The peroxidative coupling of hemigossypol to (+)- and (–)-gossypol in cottonseed extracts. Phytochemistry67, 356–361.

Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C. 2020. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal 18, 814–828.

Chen H, Nelson R, Sherwood J. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques16, 664–668, 670.

Chen Y, Zhang R, Song Y, He J, Sun J, Bai J, An Z, Dong L, Zhan Q, Abliz Z2009. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer. Analyst, 1342003–2011.

Desjardins P, Conklin D. 2010. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments22, 2565.

Eberwine J. 1996. Amplification of mRNA populations using aRNA generated from immobilized Oligo(dT)-T7 primed cDNA. BioTechniques20, 584–591.

Effenberger I, Harport M, Pfannstiel J, Klaiber I, Schaller A. 2017. Expression in Pichia pastoris and characterization of two novel dirigent proteins for atropselective formation of gossypol. Applied Microbiology and Biotechnology101, 2021–2032.

Feng S, Xu M, Liu F, Cui C, Zhou B. 2019. Reconstruction of the full-length transcriptome atlas using PacBio Iso-Seq provides insight into the alternative splicing in Gossypium australeBMC Plant Biology19, 365.

Gao W, Xu F C, Long L, Li Y, Zhang J L, Chong L, Botella J R, Song C P. 2020. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnol Journal18, 1573–1584.

Gao W, Zhu X, Ding L, Xu B, Gao Y, Cheng Y, Dai F, Liu B, Si Z, Fang L. 2022. Development of the engineered “glanded plant and glandless seed” cotton. Food Chemistry (Molecular Science), 9, 100130.

Gao X, Britt Jr R C, Shan L, He P. 2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton. Journal of Visualized Experiments20, 2938.

Gomez K A, Gomez A A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. John Wiley and Sons, New York.

Green M R, Sambrook J. 2019. Isolation of Poly(A)+ Messenger RNA Using Magnetic Oligo(dT) Beads. Cold Spring Harbor Protocols2019, doi: 10.1101/pdb.prot101733.

Huang G, Huang J Q, Chen X Y, Zhu Y X. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology17, 437–462.

Janga M R, Pandeya D, Campbell L M, Konganti K, Villafuerte S T, Puckhaber L, Pepper A, Stipanovic R D, Scheffler J A, Rathore K S. 2019. Genes regulating gland development in the cotton plant. Plant Biotechnology Journal17, 1142–1153.

Juan H. 2012. Fine mapping of the dominant glandless gene Gl2e in cotton. MSc thesis, Henan University, Zhengzhou, China. (in Chinese)

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research28, 27–30.

Kong L, Li S, Qian Y, Cheng H, Zhang Y, Zuo D, Lv L, Wang Q, Li J, Song G. 2023. Comparative transcriptome analysis revealed key genes regulating gossypol synthesis in tetraploid cultivated cotton. Genes14, 1144.

Lai X, Stigliani A, Vachon G, Carles C, Smaczniak C, Zubieta C, Kaufmann K, Parcy F. 2019. Building transcription factor binding site models to understand gene regulation in plants. Molecular Plant12, 743–763.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics29, 559.

Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293.

Lin J L, Fang X, Li J X, Chen Z W, Wu W K, Guo X X, Liu N J, Huang J F, Chen F Y, Wang L J. 2023. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. Nature Plants9, 605–615.

Luo P, Wang Y H, Wang G D, Essenberg M, Chen X Y. 2001. Molecular cloning and functional identification of (+)-δ-cadinene–8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal28, 95–104.

Ma D, Hu Y, Yang C, Liu B, Fang L, Wan Q, Liang W, Mei G, Wang L, Wang H. 2016. Genetic basis for glandular trichome formation in cotton. Nature Communications22, 10456.

Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, Jiang Y, Ke H, Chen B, Liu Z. 2021. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics53, 1385–1391.

Mandel M A, Feldmann K A, Herrera-Estrella L, Rocha-Sosa M, León P. 1996. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant Journal9, 649–658.

Maryam H, Ali Z, Saddique M A B, Nawaz F. 2022. GhCDNC and GhCYP706B1 genes mediate gossypol biosynthesis in upland cotton. Molecular Biology Reports49, 4919–4928.

Mehari T G, Fang H, Feng W, Zhang Y, Umer M J, Han J, Ditta A, Khan M K, Liu F, Wang B. 2023. Genome-wide identification and expression analysis of terpene synthases in Gossypium species in response to gossypol biosynthesis. Functional & Integrative Genomics23, 197.

Meyers J A, Sanchez D, Elwell L P, Falkow S. 1976. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. Journal of Bacteriology127, 1529–1537.

Pan Y, Meng F, Wang X. 2020. Sequencing multiple cotton genomes reveals complex structures and lays foundation for breeding. Frontiers in Plant Sciences16, 560096.

de la Paz Celorio-Mancera L, Ahn S J, Vogel H, Heckel D G. 2011. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigeraBMC Genomics23, 575.

Rathore K S, Pandeya D, Campbell L M, Wedegaertner T C, Puckhaber L, Stipanovic R D, Thenell J S, Hague S, Hake K. 2020. Ultra-low gossypol cottonseed: Selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Critical Reviews in Plant Sciences39, 1–29.

SAS (Statistical Analysis System) Institute Inc. 2023. SAS/STAT® 15.3 User’s Guide. version 9.4. Statistical Analysis System Institute Inc, Cary, North Carolina, USA.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols3, 1101–1108.

Schwartz D C, Li X, Hernandez L I, Ramnarain S P, Huff E J, Wang Y K. 1993. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science262, 110–114.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Sheng K, Sun Y, Liu M, Cao Y, Han Y, Li C, Muhammad U, Daud M K, Wang W, Li H. 2023. A reference-grade genome assembly for Gossypium bickii and insights into its genome evolution and formation of pigment glands and gossypol. Plant Communications4, 100421.

Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu Q H, Chen J, Zhu S, Zhao T. 2023. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickiiMolecular Plant16, 694–708.

Sunilkumar G, Campbell L M, Puckhaber L, Stipanovic R D, Rathore K S. 2006. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences of the United States of America103, 18054–18059.

Tao T, Zhao L, Lv Y, Chen J, Hu Y, Zhang T, Zhou B. 2013. Transcriptome sequencing and differential gene expression analysis of delayed gland morphogenesis in Gossypium australe during seed germination. PLoS ONE8, 75323.

Tettelin H, Masignani V, Cieslewicz M J, Donati C, Medini D, Ward N L, Angiuoli S V, Crabtree J, Jones A L, Durkin A S, Deboy R T, Davidsen T M, Mora M, Scarselli M, Margarit y Ros I, Peterson J D, Hauser C R, Sundaram J P, Nelson W C, Madupu R, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences of the United States of America102, 13950–13955.

Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C. 2016. Gossypol: Phytoalexin of cotton. Science China (Life Science), 59, 122–129.

Tian X, Ruan J X, Huang J Q, Yang C Q, Fang X, Chen Z W, Hong H, Wang L J, Mao Y B, Lu S. 2018. Characterization of gossypol biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America115, E5410–E5418.

Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics16, 119–128.

Wen T, Xu X, Ren A, Zhao G, Wu J. 2023. Genome-wide identification of terpenoid synthase family genes in Gossypium hirsutum and functional dissection of its subfamily cadinene synthase A in gossypol synthesis. Frontiers in Plant Science26, 1162237.

Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. 2023. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Science China (Life Sciences), 662214–2256.

Wu C, Cheng H, Li S, Zuo D, Lin Z, Zhang Y, Lv L, Wang Q, Song G. 2021. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.). BMC Plant Biology21, 102.

WWF (World Wildlife Fund). 2022. Sustainable agriculture: Cotton. [2024-6-21]. https://www.worldwildlife.org/industries/cotton

Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiology135, 507–515.

Ye K, Teng T, Yang T, Zhao D, Zhao Y. 2023. Transcriptome analysis reveals the effect of grafting on gossypol biosynthesis and gland formation in cotton. BMC Plant Biology23, 37.

Zang Y, Xu C, Xuan L, Ding L, Zhu J, Si Z, Zhang T, Hu Y. 2021. Identification and characteristics of a novel gland-forming gene in cotton. Plant Journal108, 781–792.

Zhang C, Liu X, Song Y, Sun Z, Zhang J, Wu H, Yang Y, Wang Z, He D. 2022. Comparative transcriptome analysis reveals genes associated with the gossypol synthesis and gland morphogenesis in Gossypium hirsutumGenes (Basel), 13, 1452.

Zhao T, Xie Q, Li C, Li C, Mei L, Yu J Z, Chen J, Zhu S. 2020. Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biology20, 88.

[1] Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1152-1166.
[2] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[3] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[4] Yanmin Li, Liangjing Yin, Xianyu He, Cenlong Hu, Ronghua Wu, Qian Long, Shixin Xiao, Deyi Yuan. Ploidy and fruit trait variation in oil-tea Camellia: Implications for ploidy breeding[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2662-2673.
[5] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[6] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[7] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[8] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[9] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[10] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[11] Dian Jin, Yuting Liu, Zhenyu Liu, Yuyang Dai, Jianing Du, Run He, Tianfan Wu, Yuan Chen, Dehua Chen, Xiang Zhang. Mepiquat chloride increases the Cry1Ac protein content of Bt cotton under high temperature and drought stress by regulating carbon and amino acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4032-4045.
[12] Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan. Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3923-3937.
[13] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[14] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[15] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
No Suggested Reading articles found!