Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3923-3937    DOI: 10.1016/j.jia.2024.07.044
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA

Hengwei Yu1, Zhimei Yang1, Jianfang Wang1, Huaxuan Li1, Xuefeng Li1, Entang Liang1, Chugang Mei2, 3, Linsen Zan1, 3#

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

2 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China

3 National Beef Cattle Improvement Center, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

探究影响牛肉品质的遗传因素和代谢物分子对提高牛肉品质和满足消费者需求至关重要。肉牛不同部位的肉质特点差异很大,价格也有所不同。因此,本研究旨在评价秦川牛四个不同部位(里脊、外脊、上脑和眼肌)的10个肉质性状,包括总蛋白含量(TPC)、肌内脂肪含量(IMF)、游离脂肪酸 (NEFA)、肉色(L*、a* 和 b*)、剪切力 (SF)、蒸煮损失 (CL)、屠宰后0小时pH(pH0)和屠宰后24小时pH(pH24)。进一步进行转录组和代谢组测序分析,采用加权共表达网络分析(WGCNA)方法探索与性状相关的基因和代谢物模块,构建蛋白-蛋白互作网络(PPI),筛选关键基因和代谢物,以及共同富集的KEGG通路。我们筛选到了3个与肌内脂肪含量(IMF)相关的关键基因(NDUFAB1、NDUFA12和NDUFB7),3个与游离脂肪酸(NEFA)相关的关键基因(CSRP3、ACAA3和ACADVL),1个与肉色相关的关键基因(CREBBP)。本研究为揭示牛不同肌肉部位的差异提供了新的视角,下一步基于本研究筛选到的基因和通路开展深入研究,将有助于改善牛肉品质。



Abstract  
Understanding the genetic and metabolic elements that impact meat quality is crucial to improving production and meeting consumer demands in the beef sector.  Differences in meat quality among various muscle areas in beef cattle can impact pricing in the market.  Despite progress in genomics, the specific genes and metabolites that affect meat quality characteristics in Qinchuan cattle remain inadequately understood.  Therefore, this study aims to evaluate the meat quality characteristics of four specific muscle locations (tenderloin, striploin, high rib, and ribeye muscles) in Qinchuan bulls, including 10 traits (total protein content (TPC), intramuscular fat (IMF), non-esterified fatty acid (NEFA), meat color (L*, a*, and b*), shear force (SF), cooking loss (CL), pH0, and pH24).  This experiment uses transcriptome, metabolome sequencing, and sophisticated analytical methodologies such as weighted gene co-expression network analysis (WGCNA) and protein–protein interaction networks (PPI) to identify the key genes and metabolites associated with specific traits.  The findings highlight three notable genes (NDUFAB1, NDUFA12, and NDUFB7) linked to intramuscular fat (IMF), three key genes (CSRP3, ACAA3, and ACADVL) correlated with non-esterified fatty acids (NEFA), and one crucial gene (CREBBP) influencing meat color.  In conclusion, this investigation offers a new perspective on the differences in bovine muscle locations and contributes to the molecular understanding of bovine meat quality.  Future research endeavors could delve deeper into the identified genes and pathways to enhance beef cattle’s quality and yield.


Keywords:  meat quality performance       WGCNA        cattle        transcriptome        metabolome  
Received: 03 August 2023   Accepted: 31 May 2024
Fund: 
This work was supported by the Science and Technology Special Project of the Ministry of Agriculture and Rural Affairs, China (19211178), the National Beef and Yak Industrial Technology System, China (CARS-37), the Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project, China (2022GD-TSLD-46-0102),  and the Key Research and Development Program of Shaanxi Province, China (2022NY-050 and 2022ZDLNY01-01).
About author:  Hengwei Yu, E-mail: yuhengwei@nwafu.edu.cn; #Correspondence Linsen Zan, Tel: +86-29-87091923, E-mail: zanlinsen@163.com

Cite this article: 

Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan. 2024. Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA. Journal of Integrative Agriculture, 23(11): 3923-3937.

Baldwin R L, Li R W, Li C J, Thomson J M, Bequette B J. 2012. Characterization of the longissimus lumborum transcriptome response to adding propionate to the diet of growing Angus beef steers. Physiological Genomics44, 543–550.

Bao P, Chen L, Wang Y, Hu Y, Wang Y, Fang H, Yang H, Zhang B, He B, Zhou C. 2021. Quality of frozen porcine Longissimus lumborum muscles injected with l-arginine and l-lysine solution. Meat Science179, 108530.

Bertram K, Agafonov D E, Liu W T, Dybkov O, Will C L, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. 2017. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature542, 318–323.

Chen Z S, Huang X, Talbot K, Chan H Y E. 2021. A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3. Cell Death & Disease12, 136.

Cui R, Kang X, Liu Y, Liu X, Chan S, Wang Y, Li Z, Ling Y, Feng D, Li M, Lv F, Fang M. 2022. Integrated analysis of the whole transcriptome of skeletal muscle reveals the ceRNA regulatory network related to the formation of muscle fibers in Tan sheep. Frontiers in Genetics13, 991606.

Dong L, Jin Y, Cui H, Yu L, Luo Y, Wang S, Wang H. 2020. Effects of diet supplementation with rumen-protected betaine on carcass characteristics and fat deposition in growing lambs. Meat Science166, 108154.

Fagerberg L, Hallström B M, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto C A-K, Skogs M, Takanen J O, Berling H, Tegel H, Mulder J, Nilsson P, et al. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics13, 397–406.

Fan X, Gao X, Li R, Pan D, Zhou C. 2024. Myofibrillar proteins’ intermolecular interaction weakening and degradation: Are they mainly responsible for the tenderization of meat containing l-arginine, l-lysine, or/and NaCl? Food Chemistry441, 138318.

Feng X, Pan C, Liu S, Hu H, Ma Y. 2023. Identification of core genes affecting IMF deposition in bovine. Animal Biotechnology34, 2887–2899.

Fogelholm J, Henriksen R, Höglund A, Huq N, Johnsson M, Lenz R, Jensen P, Wright D. 2020. CREBBP and WDR 24 identified as candidate genes for quantitative variation in red-brown plumage colouration in the chicken. Scientific Reports10, 1161.

Fu Y, Sun W, Xu C, Gu S, Li Y, Liu Z, Chen J. 2014. Genetic variants in KDR transcriptional regulatory region affect promoter activity and intramuscular fat deposition in Erhualian pigs. Animal Genetics45, 373–380.

Gagaoua M, Picard B, Monteils V. 2018. Associations among animal, carcass, muscle characteristics, and fresh meat color traits in Charolais cattle. Meat Science140, 145–156.

Gotoh T, Albrecht E, Teuscher F, Kawabata K, Sakashita K, Iwamoto H, Wegner J. 2009. Differences in muscle and fat accretion in Japanese Black and European cattle. Meat Science82, 300–308.

Goutzelas Y, Kontou P, Mamuris Z, Bagos P, Sarafidou T. 2022. Meta-analysis of gene expression data in adipose tissue reveals new obesity associated genes. Gene818, 146223.

Guo X, Zhang H, Wang H, He X X, Wang J X, Wei W, Liu M, Xu J M, Liu Y N, Jiang R S. 2023. Identification of key modules and hub genes involved in regulating the color of chicken breast meat using WGCNA. Animals (Basel), 13, 2356.

Hu L, Sammad A, Zhang C, Brito L F, Xu Q, Wang Y. 2022. Transcriptome analyses reveal essential roles of alternative splicing regulation in heat-stressed holstein cows. International Journal of Molecular Sciences23, 10664.

Jeong J Y, Kim J S, Nguyen T H, Lee H J, Baik M. 2013. Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Animal Genetics44, 627–635.

Joo S T, Hwang Y H, Frank D. 2017. Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. Meat Science132, 45–51.

Khan R, Raza S H A, Junjvlieke Z, Wang H, Cheng G, Smith S B, Jiang Z, Li A, Zan L. 2020. RNA-seq reveal role of bovine TORC2 in the regulation of adipogenesis. Archives of Biochemistry and Biophysics680, 108236.

Kim G D, Lee S Y, Jung E-Y, Song S, Hur S J. 2021. Quantitative changes in peptides derived from proteins in beef tenderloin (psoas major muscle) and striploin (longissimus lumborum muscle) during cold storage. Food Chemistry338, 128029.

Kim W K, Singh A K, Wang J, Applegate T. 2022. Functional role of branched chain amino acids in poultry: A review. Poultry Science101, 101715.

Knowles S O, Grace N D, Rounce J R, Realini C E. 2020. Quality, nutrient and sensory characteristics of aged meat from lambs supplemented with selenomethionine. Food Research International (Ottawa, Ont.), 137, 109655.

Kong Y, Liu C, Zhang X, Liu X, Li W, Li F, Wang X, Yue X. 2023. Characterization of fatty acid compositions in longissimus thoracis muscle and identification of candidate gene and SNPs related to polyunsaturated fatty acid in Hu sheep. Journal of Animal Science101, skac382.

Li C B, Chen Y J, Xu X L, Huang M, Hu T J, Zhou G H. 2010. Effects of low-voltage electrical stimulation and rapid chilling on meat quality characteristics of Chinese Yellow crossbred bulls. Meat Science72, 9–17.

Li D, Pan Z, Zhang K, Yu M, Yu D, Lu Y, Wang J, Zhang J, Zhang K, Du W. 2020. Identification of the differentially expressed genes of muscle growth and intramuscular fat metabolism in the development stage of Yellow Broilers. Genes11, 244.

Li Y, Jiao J. 2017. Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via β-catenin. The Journal of Cell Biology216, 1975–1992.

Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. 2016. How muscle structure and composition influence meat and flesh quality. The Scientific World Journal2016, 3182746.

Liu X, Hou S, Xiang R, Hu C, Chen Z, Li N, Yan H, Yu X, Li X, Chi Y, Yang J. 2022. Imipramine activates FAM3A-FOXA2-CPT2 pathway to ameliorate hepatic steatosis. Metabolism: Clinical and Experimental136, 155292.

Liu Z, Tan X, Jin Q, Zhan W, Liu G, Cui X, Wang J, Meng X, Zhu R, Wang K. 2023. Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development. Animal Bioscience37, 982–992.

Luo N, Shu J, Yuan X, Jin Y, Cui H, Zhao G, Wen J. 2022. Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics23, 308.

Mancini R, Hunt M. 2005. Current research in meat color. Meat Science71, 100–121.

Marín-Garzón N, Magalhães A, Mota L, Fonseca L, Chardulo L, Albuquerque L. 2021. Genome-wide association study identified genomic regions and putative candidate genes affecting meat color traits in Nellore cattle. Meat Science171, 108288.

Miao W, Ma Z, Tang Z, Yu L, Liu S, Huang T, Wang P, Wu T, Song Z, Zhang H, Li Y, Zhou L. 2021. Integrative ATAC-seq and RNA-seq analysis of the longissimus muscle of Luchuan and Duroc pigs. Frontiers in Nutrition8, 742672.

Nishimura Y, Sasagawa S, Ariyoshi M, Ichikawa S, Shimada Y, Kawaguchi K, Kawase R, Yamamoto R, Uehara T, Yanai T, Takata R, Tanaka T. 2015. Systems pharmacology of adiposity reveals inhibition of EP300 as a common therapeutic mechanism of caloric restriction and resveratrol for obesity. Frontiers in Pharmacology6, 199.

O’Quinn T G, Legako J F, Brooks J C, Miller M F. 2018. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Translational Animal Science2, 26–36.

Peng M, Li S, He Q, Zhao J, Li L, Ma H. 2018. Proteomics reveals changes in hepatic proteins during chicken embryonic development: An alternative model to study human obesity. BMC Genomics19, 29.

Pierzchala M, Hoekman A J W, Urbanski P, Kruijt L, Kristensen L, Young J F, Oksbjerg N, Goluch D, te Pas M F W. 2014. Validation of biomarkers for loin meat quality (M. longissimus) of pigs. Journal of Animal Breeding and Genetics131, 258–270.

Qi Y, Wang X, Zhu C, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. 2024. Mutations in the FOXO3 gene and their effects on meat traits in Gannan yaks. International Journal of Molecular Sciences25, 1948.

Ramayo-Caldas Y, Ballester M, Fortes M R S, Esteve-Codina A, Castelló A, Noguera J L, Fernández A I, Pérez-Enciso M, Reverter A, Folch J M. 2014. From SNP co-association to RNA co-expression: Novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genomics15, 232.

San J, Du Y, Wu G, Xu R, Yang J, Hu J. 2021. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens-the extracellular matrix (ECM) receptor interaction signaling pathway. Poultry Science100, 101135.

Shirouchi B, Albrecht E, Nuernberg G, Maak S, Olavanh S, Nakamura Y, Sato M, Gotoh T, Nuernberg K. 2014. Fatty acid profiles and adipogenic gene expression of various fat depots in Japanese Black and Holstein steers. Meat Science96, 157–164.

Silva S T N, Brito J A, Arranz R, Sorzano C Ó S, Ebel C, Doutch J, Tully M D, Carazo J M, Carrascosa J L, Matias P M, Bandeiras T M. 2018. X-ray structure of full-length human RuvB-Like 2-mechanistic insights into coupling between ATP binding and mechanical action. Scientific Reports8, 13726.

Srikanth K, Lee S H, Chung K Y, Park J E, Jang G W, Park M R, Kim N Y, Kim T H, Chai H H, Park W C, Lim D. 2020. A gene-set enrichment and protein-protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in hanwoo cattle. Genes11, 316.

Stewart S M, Gardner G E, Williams A, Pethick D W, McGilchrist P, Kuchida K. 2021. Association between visual marbling score and chemical intramuscular fat with camera marbling percentage in Australian beef carcasses. Meat Science181, 108369.

Supakankul P, Mekchay S. 2016. Association of NLK polymorphisms with intramuscular fat content and fatty acid composition traits in pigs. Meat Science118, 61–65.

Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. 2022. Genome-wide association study of growth traits in a four-way crossbred pig population. Genes13, 1990

Wang S, Yang C, Pan C, Feng X, Lei Z, Huang J, Wei X, Li F, Ma Y. 2022. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene818, 146225.

Wang X, Xue C, Wang X, Liu H, Xu Y, Zhao R, Jiang Z, Dodson M V, Chen J. 2009. Differential display of expressed genes reveals a novel function of SFRS18 in regulation of intramuscular fat deposition. International Journal of Biological Sciences5, 28–33.

Wang Z, Shang P, Li Q, Wang L, Chamba Y, Zhang B, Zhang H, Wu C. 2017. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Scientific Reports7, 46717.

Wood J D, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Hughes S I, Whittington F M. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science78, 343–358.

Yang F, Wang Q P, He K, Wang M H, Pan Y C. 2012. Association between gene polymorphisms of propanoate metabolism pathway and meat quality as well as carcass traits in pigs. Hereditas34, 872–878. (in Chinese)

Yu B, Zhou S, Long D, Ning Y, Yao H, Zhou E, Wang Y. 2022. DDX55 promotes hepatocellular carcinoma progression by interacting with BRD4 and participating in exosome-mediated cell-cell communication. Cancer Science113, 3002–3017.

Yu H, Raza S H A, Pan Y, Cheng G, Mei C, Zan L. 2023a. Integrative analysis of blood transcriptomics and metabolomics reveals molecular regulation of backfat thickness in qinchuan cattle. Animals13, 1060.

Yu H, Wang J, Zhang K, Cheng G, Mei C, Zan L. 2023b. Integrated multi-omics analysis reveals variation in intramuscular fat among muscle locations of Qinchuan cattle. BMC Genomics24, 367.

Yu H, Yu S, Guo J, Wang J, Mei C, Abbas Raza S H, Cheng G, Zan L. 2024. Comprehensive analysis of transcriptome and metabolome reveals regulatory mechanism of intramuscular fat content in beef cattle. Journal of Agricultural and Food Chemistry72, 2911–2924.

Yu T, Tian X, Li D, He Y, Yang P, Cheng Y, Zhao X, Sun J, Yang G. 2023. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig. Food Research International (Ottawa, Ont.), 166, 112550.

Zhang J, Zhuang H, Cao J, Geng A, Wang H, Chu Q, Yan Z, Zhang X, Zhang Y, Liu H. 2022. Breast meat fatty acid profiling and proteomic analysis of Beijing-You Chicken during the laying period. Frontiers in Veterinary Science9, 908862.

Zhang R, Hou T, Cheng H, Wang X. 2019. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology33, 13310–13322.

Zhang S, Dang Y, Zhang Q, Qin Q, Lei C, Chen H, Lan X. 2015. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) rapidly identified a critical missense mutation (P236T) of bovine ACADVL gene affecting growth traits. Gene559, 184–188.

Zhang Y, Liu Y, Li J, Xing T, Jiang Y, Zhang L, Gao F. 2020. Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poultry Science99, 5827–5837.

Zhu J, Wang Y, Su Y, Zheng M, Cui H, Chen Z. 2024. RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages. BMC Genomics25, 219.

[1] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[2] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[3] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[4] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
No Suggested Reading articles found!