Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1656-1670    DOI: 10.1016/j.jia.2023.10.040
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome wide association analysis reveals multiple QTLs controlling root development in maize 

Huairen Zhang1, Tauseef Taj Kiani1, 3, Huabang Chen1, Juan Liu1, Xunji Chen2#

1 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

2 Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agriculture/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091, China

3 University of Chinese Academy of Sciences, Beijing 101408, China

 Highlights 
Genome-wide association studies (GWAS) identified five significant loci associated with primary root length, with AX-91771718 explaining 6% of the phenotypic variation.
Candidate gene analysis identified GRMZM2G400533, encoding an ABC transporter G37, as a key candidate gene.  Expression analysis revealed a significant negative correlation between GRMZM2G400533 expression levels and primary root length.
Haplotype analysis uncovered three functional variants and eight haplotypes contributing to variation in primary root length.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米根系在地上植物的发育中起着至关重要的作用,并通过吸收田间的水分和养分来决定产量。然而,由于玉米根系构造复杂,而且其根系构型受环境影响较大,所以目前人们对玉米根系的遗传结构知之甚少。本研究利用研究组自主开发的高通量半自动水培系统对518个玉米核心材料进行了玉米根系的表型鉴定和遗传研究研究发现,不同自交系材料之间主根和苗期根系发育进程都存在较大的差异;群体结构分析表明该群体具有分层性,其连锁不平衡衰减距离平均小于50Kb。利用600 K 高密度SNP芯片,我们对这518个核心材料进行了基因分型,并对24个根系性状进行了全基因组关联分析(GWAS),通过显著位点区间分析,最终确定了9个显著相关的SNP7个候选基因。其中候选基因GRMZM2G400533位于主效SNP位点(AX-91771718)上游5Kb范围内,与主根长度变异显著相关,并优先在主根和冠根中表达。表达分析发现该候选基因表达随着主根的发育而升高,但与主根伸长呈负相关。基于GRMZM2G400533的候选基因分析,我们还鉴定了三种功能变异和八种等位基因单倍型。本研究将深化我们对玉米根系发育的理解,为玉米根系优化改良提供理论依据。



Abstract  

Maize root system plays a crucial role in the development of the aboveground plant and determines the yield through the uptake of water and nutrients in the field.  However, the genetic architecture of the maize root system is largely unknown mainly due to its complexity and the interactions between genotype and environment.  Using a high-throughput semi-automatic hydroponic platform with stable conditions, we comprehensively characterized the root system in a core population of 518 diverse inbred lines of maize.  Population structure analysis revealed that the panel has stratification and a linkage disequilibrium decay distance of less than 50 kb.  Based on genotyping with the high-density 600 K SNPs, we conducted a genome wide association analysis (GWAS) and identified nine SNPs and seven candidate genes significantly associated with 24 traits.  One candidate gene, GRMZM2G400533, is located at the upstream 5 kb region from the leading SNP (AX-91771718) and was significantly associated with primary root length and preferentially expressed in the primary root and crown root.  Expression of GRMZM2G400533 increased as the primary root developed but was negatively correlated with primary root elongation.  An analysis of candidate gene GRMZM2G400533 identified three functional variants and eight allelic haplotypes.  This study will broaden our understanding of maize root development and provide a theoretical basis for maize improvement through optimization of the root system.

Keywords:  maize       primary root        seedling root system        candidate gene        GWAS  
Received: 28 July 2023   Online: 02 November 2023   Accepted: 07 October 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (32160440), the Manas County National Hybrid Corn Seed Production Base Construction Project, China (MNSZZDX-2021-01), and the National Key Research and Development Programs of China (2022YFF1003304).  
About author:  #Correspondence Xunji Chen, E-mail: chenxj713@163.com

Cite this article: 

Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. 2025. Genome wide association analysis reveals multiple QTLs controlling root development in maize . Journal of Integrative Agriculture, 24(5): 1656-1670.

Aiken R M, Smucker A J. 1996. Root system regulation of whole plant growth. Annual Review of Phytopathology34, 325–346.

Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research19, 1655–1664.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics23, 2633–2635.

Burton A L, Johnson J M, Foerster J M, Hirsch C N, Buell C, Hanlon M T, Kaeppler S M, Brown K M, Lynch J P. 2014. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics127, 2293–2311.

Cai H, Chen F, Mi G, Zhang F, Maurer H P, Liu W, Reif J C, Yuan L. 2012. Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics125, 1313–1324.

Danecek P, Bonfield J K, Liddle J, Marshall J, Ohan V, Pollard M O, Whitwham A, Keane T, McCarthy S A, Davies R M, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience10, giab008.

Do T H T, Martinoia E, Lee Y, Hwang J U. 2021. 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants. Plant Physiology187, 1876–1892.

Hoagland D R, Arnon D I. 1950. The Water-Culture Method for Growing Plants Without Soil. Circular California Agricultural Experiment Station, USA. p. 347.

Hochholdinger F. 2009. The maize root system: Morphology, anatomy, and genetics. In: Handbook of Maize: Its Biology. Springer Science+Business Media, USA. pp. 145–160.

Hochholdinger F. 2016. Untapping root system architecture for crop improvement. Journal of Experimental Botany67, 4431–4433.

Hochholdinger F, Tuberosa R. 2009. Genetic and genomic dissection of maize root development and architecture. Current Opinion in Plant Biology12, 172–177.

Hochholdinger F, Woll K, Sauer M, Dembinsky D. 2004. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Annual of Botany93, 359–368.

Hochholdinger F, Wulff D, Reuter K, Park W J, Feix G. 2000. Tissue-specific expression of AUX1 in maize roots. Journal of Plant Physiology157, 315–319.

Hochholdinger F, Yu P, Marcon C. 2018. Genetic control of root system development in maize. Trends in Plant Science23, 79–88.

Hoopes G M, Hamilton J P, Wood J C, Esteban E, Pasha A, Vaillancourt B, Provart N J, Buell C R. 2019. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant Journal97, 1154–1167.

Huang P, Jiang H, Zhu C, Barry K, Jenkins J, Sandor L, Schmutz J, Box M S, Kellogg E A, Brutnell T P. 2017. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants3, 17054.

Ito H, Gray W M. 2006. A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiology142, 63–74.

Ju C, Zhang W, Liu Y, Gao Y, Wang X, Yan J, Yang X, Li J. 2018. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biology18, 171.

Kassambara A, Mundt F. 2020. Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. [2022-2-12]. https://CRAN.R-project.org/package=factoextra

Li C, Tian D, Tang B, Liu X, Teng X, Zhao W, Zhang Z, Song S. 2021. Genome variation map: A worldwide collection of genome variations across multiple species. Nucleic Acids Research49, D1186–D1191.

Li P, Chen F, Cai H, Liu J, Pan Q, Liu Z, Gu R, Mi G, Zhang F, Yuan L. 2015. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany66, 3175–3188.

Li P C, Yang X Y, Wang H M, Pan T, Yang J Y, Wang Y Y, Xu Y, Yang Z F, Xu C W. 2021. Metabolic responses to combined water deficit and salt stress in maize primary roots. Journal of Integrative Agriculture20, 109–119.

Lê S, Josse J, Husson F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software25, 1–18.

Liang M, Haroldsen V, Cai X, Wu Y. 2006. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell and Environment29, 746–753.

Lipka A E, Tian F, Wang Q, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics28, 2397–2399.

Members C N, Partners. 2021. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research50, D27–D38.

Moussa A A, Mandozai A, Jin Y, Qu J, Zhang Q, Zhao H, Anwari G, Khalifa M A S, Lamboro A, Noman M, Bakasso Y, Zhang M, Guan S, Wang P. 2021. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. BMC Genomics22, 558.

Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T. 2015. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics16, 47.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics81, 559–575.

R Core Team. 2022. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. [2022-2-12]. https://www.R-project.org/

Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. 2022. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nature Plants8, 1408–1422.

Rivas M Á, Friero I, Alarcón M V, Salguero J. 2022. Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development. Frontiers in Plant Science13, 836592.

Růžička K, Strader L C, Bailly A, Yang H, Blakeslee J, Łangowski Ł, Nejedlá E, Fujita H, Itoh H, Syōno K, Hejátko J, Gray W M, Martinoia E, Geisler M, Bartel B, Murphy A S, Friml J. 2010. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America107, 10749–10753.

Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R. 2016. Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1Journal of Experimental Botany67, 1149–1159.

Sanchez D L, Liu S, Ibrahim R, Blanco M, Lübberstedt T. 2018. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Science268, 30–38.

Sanguineti M, Giuliani M M, Govi G, Tuberosa R, Landi P. 1998. Root and shoot traits of maize inbred lines grown in the field and in hydroponic culture and their relationships with root lodging. Maydica, 43, 211–216.

Schneider H M, Lor V S, Zhang X, Saengwilai P, Hanlon M T, Klein S P, Davis J L, Borkar A N, Depew C L, Bennett M J, Kaeppler S M, Brown K M, Bhosale R, Lynch J P. 2023. Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize. Proceedings of the National Academy of Sciences of the United States of America120, e2219668120.

Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet G T, York L M. 2021. RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB Plants13, plab056.

Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, De Leon N, Kaeppler S M. 2011. Genome-wide atlas of transcription during maize development. The Plant Journal66, 553–563.

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang T Y, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationship to aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Shin J H, Blay S, McNeney B, Graham J. 2006. LD heatmap: An R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. Journal of Statistical Software16, 1–9.

Song W, Wang B, Hauck A L, Dong X, Li J, Lai J. 2016. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. Journal of Integrative Plant Biology58, 266–279.

Suzuki M, Sato Y, Wu S, Kang B H, McCarty D R. 2015. Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate. The Plant Cell27, 2288–2300.

Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Front of Plant Science10, 1306.

Taramino G, Sauer M, Stauffer Jr J L, Multani D, Niu X, Sakai H, Hochholdinger F. 2007. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. The Plant Journal50, 649–659.

Wang H, Tang X, Yang X, Fan Y, Xu Y, Li P, Xu C, Yang Z. 2021. Exploiting natural variation in crown root traits via genome-wide association studies in maize. BMC Plant Biology21, 346.

Woll K, Borsuk L A, Stransky H, Nettleton D, Schnable P S, Hochholdinger F. 2005. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1Plant Physiology139, 1255–1267.

Yu J, Buckler E S. 2006. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology17, 155–160.

Yu P, Gutjahr C, Li C, Hochholdinger F. 2016. Genetic control of lateral root formation in cereals. Trends in Plant Science21, 951–961.

Zhang C, Dong S S, Xu J Y, He W M, Yang T L. 2019. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics35, 1786–1788.

Zhang M, Lu X, Li C, Zhang B, Zhang C, Zhang X S, Ding Z. 2018. Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress. Plant Physiology177, 819–832.

Zhang Z, Zhang B, Chen Z, Zhang D, Zhang H, Wang H, Zhang Y E, Cai D, Liu J, Xiao S. 2018. A pectin methylesterase gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nature Communications9, 3678.

Zhu C, Box M S, Thiruppathi D, Hu H, Yu Y, Martin C, Doust A N, McSteen P, Kellogg E A. 2022. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. Plant Physiology189, 715–734.

Zurek P R, Topp C N, Benfey P N. 2015. Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture. Plant Physiology167, 1487–1496.

[1] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[2] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[3] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[4] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[5] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[6] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[7] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[8] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[9] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[10] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[11] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[12] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[13] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[14] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[15] Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 888-900.

No Suggested Reading articles found!