Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3437-3456    DOI: 10.1016/j.jia.2023.11.002
Section 2: Cotton biotechnology Advanced Online Publication | Current Issue | Archive | Adv Search |
EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton
Qingdi Yan1, 2, Wei Hu3, Chenxu Gao3, Lan Yang1, Jiaxian Yang3, Renju Liu3, Masum Billah1, Yongjun Lin2, Ji Liu1, 4, Pengfei Miao1, 4, Zhaoen Yang1, 3#, Fuguang Li1, 3#, Wenqiang Qin1, 4#
1 State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
2 National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
3 State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Zhengzhou University, Zhengzhou 450066, China
4 National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

EPSPS是莽草酸合成途径中的关键基因,已被广泛用于培育抗除草剂作物。然而,它在调节细胞伸长中的作用却知之甚少。通过过表达EPSPS基因,我们产生了对草甘膦有抗性的品系,表现出意想不到的矮化表型。代表性品系DHR1在其整个生长期表现出稳定的矮化表型。除株高外,DHR1的其他农艺性状与其转基因外植体ZM24相似。石蜡切片实验表明,由于节间细胞的伸长和分裂减少,导致DHR1节间缩短。外源激素恢复实验证实DHR1不是典型的BRGA相关的矮化突变体。杂交分析和精细定位证实了EPSPS基因是矮因果基因,并且该表型可以在不同的基因型中遗传。转录组和代谢组分析显示,与ZM24相比,苯丙烷合成途径相关的基因在DHR1中富集。类黄酮代谢物在DHR1中富集,而木质素代谢物减少。黄酮类化合物的增加可能导致生长素信号通路基因的差异表达,并改变生长素反应,从而影响细胞伸长。这项研究提供了一种新的矮策略,并将加速棉花栽培的轻型化和机械化收获的改进



Abstract  
EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.  However, its role in regulating cell elongation is poorly understood.  Through the overexpression of EPSPS genes, we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.  A representative line, DHR1, exhibits a stable dwarf phenotype throughout its entire growth period.  Except for plant height, the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.  Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.  Exogenous hormones confirmed that DHR1 is not a classical brassinolide (BR)- or gibberellin (GA)-related dwarfing mutant.  Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism, and the phenotype can be inherited in different genotypes.  Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.  Flavonoid metabolites are enriched in DHR1, whereas lignin metabolites are reduced.  The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response, subsequently affecting cell elongation.  This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.


Keywords:  EPSPS        cotton        T-DNA        dwarfism        herbicide resistance  
Received: 31 July 2023   Accepted: 25 September 2023
Fund: 
This work was supported by funding from the Natural Science Foundation of Henan Province, China (232300421010), the Key Research and Development Project of Henan Province, China (231111110400), the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City, China (320LH045), the Hainan Yazhou Bay Seed Laboratory, China (B21HJ0215), the Fundamental Research Funds of State Key Laboratory of Cotton Biology, China (2021CBE03), the Central Public-interest Scientific Institution Basal Research Fund, China (Y2023XK16), and the Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS to F.G.L).  
About author:  #Correspondence Zhaoen Yang, E-mail: yangzhaoen0925@126.com; Fuguang Li, E-mail: Aylifug@caas.cn; Wenqiang Qin, E-mail: qinwenqiang2005@163.com

Cite this article: 

Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. 2024. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton. Journal of Integrative Agriculture, 23(10): 3437-3456.

Anderson N A, Bonawitz N D, Nyffeler K, Chapple C. 2015. Loss of FERULATE 5-HYDROXYLASE leads to mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in ArabidopsisPlant Physiology169, 1557–1567.

Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in ArabidopsisPlant Physiology126, 524–535.

Casanova-Saez R, Mateo-Bonmati E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology13, a039867.

Chapple C C, Vogt T, Ellis B E, Somerville C R. 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell4, 1413–1424.

Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant6, 1769–1780.

Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol Journal10, 139–149

Choe S, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell10, 231–243.

Clouse S D, Langford M, McMorris T C. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology111, 671–678.

Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann J S, Jurgens G, Estelle M. 2005. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell9, 109–119.

Dong X C, Qian T F, Chu J P, Zhang X, Liu Y J, Dai X L, He M R. 2023. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose. Journal of Integrative Agriculture22, 1351–1365.

Du M M, Spalding E P, Gray W M. 2020. Rapid auxin-mediated cell expansion. Annual Review of Plant Biology71, 379–402.

Duke S O. 2018. The history and current status of glyphosate. Pest Management Science74, 1027–1034.

Duke S O, Powles S B. 2008. Glyphosate: A once-in-a-century herbicide. Pest Management Science64, 319–325.

Fang S, Yao J, Li Y, Zhu S, Pan J, Li Q, Wang W, Kong J, He L, Zhang Y, Chen W. 2022. Fine mapping and characterization of the Crinkled Dwarf gene in cotton. Industrial Crops and Products184, 115034.

Farquharson K L. 2014. SAUR19 links auxin and plasma membrane H+-ATPases in cell expansion. Plant Cell26, 1835.

Fernandez-Moreno P T, Alcantara-de la Cruz R, Smeda R J, De Prado R. 2017. Differential resistance mechanisms to glyphosate result in fitness cost for Lolium perenne and LmultiflorumFrontiers in Plant Science8, 1796.

Filiz E, Koc I. 2016. Genome-wide identification and comparative analysis of EPSPS (aroA) genes in different plant species. Journal of Plant Biochemistry and Biotechnology25, 21–29.

Franke R, Humphreys J M, Hemm M R, Denault J W, Ruegger M O, Cusumano J C, Chapple C. 2002. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. The Plant Journal30, 33–45.

Fraser C M, Chapple C. 2011. The phenylpropanoid pathway in ArabidopsisArabidopsis Book9, e0152.

Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P B, Ljung K, Sandberg G, Hooykaas P J, Palme K, Offringa R. 2004. A PINOID-dependent binary switch in apical–basal PIN polar targeting directs auxin efflux. Science306, 862–865.

Fu L I, Yan D, Gao L F, Liu P, Zhao G Y, Jia J Z, Ren Z L. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture21, 1243–1252.

Fulton T M, Chunwongse J, Tanksley S D. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter13, 207–209.

Gencsoylu I. 2009. Effect of plant growth regulators on agronomic characteristics, lint quality, pests, and predators in cotton. Journal of Plant Growth Regulation28, 147–153.

Gong L S, Qu S J, Huang G M, Guo Y L, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. Improving maize grain yield by formulating plant growth regulator strategies in North China. Journal of Integrative Agriculture20, 622–632.

Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in ArabidopsisPlant Cell18, 3399–3414.

Hedden P. 2003. The genes of the green revolution. Trends in Genetics19, 5–9.

Helliwell C A, Sheldon C C, Olive M R, Walker A R, Zeevaart J A, Peacock W J, Dennis E S. 1998. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3Proceedings of the National Academy of Sciences of the United States of America95, 9019–9024.

Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. 2017. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Molecular Plant10, 590–604.

Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M. 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell16, 1446–1465.

Huang G, Huang J Q, Chen X Y, Zhu Y X. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology72, 437–462.

Huang G, Zhu Y X. 2021. Breeding cotton with superior fiber quality: Identification and utilization of multiple elite loci and exotic genetic resources. Science China (Life Science), 64, 1197–1198.

Ingold E, Sugiyama M, Komamine A. 1990. L-alpha-Aminooxy-beta-phenylpropionic acid inhibits lignification but not the differentiation to tracheary elements of isolated mesophyll cells of Zinnia elegansPhysiologia Plantarum78, 67–74.

Ji G, Liang C, Cai Y, Pan Z, Meng Z, Li Y, Jia Y, Miao Y, Pei X, Gong W, Wang X, Gao Q, Peng Z, Wang L, Sun J, Geng X, Wang P, Chen B, Wang P, Zhu T, et al. 2021. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. New Phytologist229, 2091–2103.

Jing C, Ma X J, Di J C, Chen X S. 2011. Gene mapping of an ultra-dwarf mutant in upland cotton. Hereditas33, 1393–1397.

Kakiuchi Y, Galis I, Tamogami S, Wabiko H. 2006. Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta223, 237–247.

Kim J I, Ciesielski P N, Donohoe B S, Chapple C, Li X. 2014. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools. Plant Physiology164, 584–595.

Kuhn B M, Geisler M, Bigler L, Ringli C. 2011. Flavonols accumulate asymmetrically and affect auxin transport in ArabidopsisPlant Physiology156, 585–595.

Kuhn B M, Nodzynski T, Errafi S, Bucher R, Gupta S, Aryal B, Dobrev P, Bigler L, Geisler M, Zazimalova E, Friml J, Ringli C. 2017. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Scientific Reports7, 41906.

Lanot A, Hodge D, Jackson R G, George G L, Elias L, Lim E K, Vaistij F E, Bowles D J. 2006. The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thalianaThe Plant Journal48, 286–295.

Leple J C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K Y, Kim H, Ruel K, Lefebvre A, Joseleau J P, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, et al. 2007. Downregulation of cinnamoyl-coenzyme A reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell19, 3669–3691.

Lewis D R, Ramirez M V, Miller N D, Vallabhaneni P, Ray W K, Helm R F, Winkel B S, Muday G K. 2011. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology156, 144–164.

Li J, Nagpal P, Vitart V, McMorris T C, Chory J. 1996. A role for brassinosteroids in light-dependent development of ArabidopsisScience272, 398–401.

Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell110, 213–222.

Li X, Bonawitz N D, Weng J K, Chapple C. 2010. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell22, 1620–1632.

Li Y, Han S, Qi Y. 2023. Advances in structure and function of auxin response factor in plants. Journal of Integrative Plant Biology65, 617–632.

Li Y, Kim J I, Pysh L, Chapple C. 2015. Four isoforms of Arabidopsis 4-coumarate:CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology169, 2409–2421.

Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. 2018. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal16, 86–99.

Liu C, Zheng S, Gui J S, Fu C J, Yu H S, Song D L, Shen J H, Qin P, Liu X M, Han B, Yang Y Z, Li L G. 2018. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Molecular Plant11, 288–299.

Lu G W, Coneva V, Casaretto J A, Ying S, Mahmood K, Liu F, Nambara E, Bi Y M, Rothstein S J. 2015. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant Journal83, 913–925

Ma C, Rehman A, Li H G, Zhao Z B, Sun G, Du X M. 2022. Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton. BMC Plant Biology22, 5.

Macmillan C P, Birke H, Bedon F, Pettolino F A. 2013. Lignin deposition in cotton cells - Where is the lignin? Journal of Plant Biochemistry & Physiology1, 1000e1106.

Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology63, 73–105.

Martin S L, Benedict L, Sauder C A, Wei W, da Costa L O, Hall L M, Beckie H J. 2017. Glyphosate resistance reduces kochia fitness: Comparison of segregating resistant and susceptible F2 populations. Plant Science261, 69–79.

McKim S M. 2019. How plants grow up. Journal of Integrative Plant Biology61, 257–277.

Meyer K. 2003. Secondary products | lignin. In: Thomas B, ed., Encyclopedia of Applied Plant Sciences. Elsevier, Oxford. pp. 1131–1140.

Muro-Villanueva F, Mao X, Chapple C. 2019. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Current Opinion in Biotechnology56, 202–208.

Nakajima M, Shimada A, Takashi Y, Kim Y C, Park S H, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I. 2006. Identification and characterization of Arabidopsis gibberellin receptors. The Plant Journal46, 880–889.

Overvoorde P J, Okushima Y, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A. 2005. Functional genomic analysis of the AUXIN/INDOLE–3-ACETIC ACID gene family members in Arabidopsis thalianaPlant Cell17, 3282–3300.

Park J E, Park J Y, Kim Y S, Staswick P E, Jeon J, Yun J, Kim S Y, Kim J, Lee Y H, Park C M. 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in ArabidopsisJournal of Biological Chemistry282, 10036–10046.

Peer W A, Bandyopadhyay A, Blakeslee J J, Makam S N, Chen R J, Masson P H, Murphy A S. 2004. Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thalianaPlant Cell16, 1898–1911.

Peer W A, Murphy A S. 2007. Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science12, 556–563.

Peret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador M A, Yun J, Alonso J, Beemster G T, Laplaze L, Murphy A, et al. 2012. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell24, 2874–2885.

Qi H K, Du M W, Meng L, Xie L W, Eneji A E, Xu D Y, Tian X L, Li Z H. 2022. Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period. Journal of Integrative Agriculture21, 2577–2587.

Ranocha P, Denance N, Vanholme R, Freydier A, Martinez Y, Hoffmann L, Kohler L, Pouzet C, Renou J P, Sundberg B, Boerjan W, Goffner D. 2010. Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. The Plant Journal63, 469–483.

Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C, Novak O, Morreel K, Lacombe B, Martinez Y, Pfrunder S, Jin X, Renou J P, Thibaud J B, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications4, 2625.

Regnault T, Daviere J M, Heintz D, Lange T, Achard P. 2014. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. The Plant Journal80, 462–474.

Rinaldi M A, Liu J, Enders T A, Bartel B, Strader L C. 2012. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Molecular Biology79, 359–373.

Salazar-Cerezo S, Martinez-Montiel N, Garcia-Sanchez J, Perez Y T R, Martinez-Contreras R D. 2018. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiology Research208, 85–98.

Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in ArabidopsisThe Plant Journal60, 771–782.

Spartz A K, Lee S H, Wenger J P, Gonzalez N, Itoh H, Inzé D, Peer W A, Murphy A S, Overvoorde P J, Gray W M. 2012. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal70, 978–990.

Sun T, Goodman H M, Ausubel F M. 1992. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell4, 119–128.

Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei G P, Nagy F, Schell J, Koncz C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in ArabidopsisCell85, 171–182.

Tao Y, Ferrer J L, Ljung K, Pojer F, Hong F X, Long J A, Li L, Moreno J E, Bowman M E, Ivans L J, Cheng Y F, Lim J, Zhao Y D, Ballare C L, Sandberg G, Noel J P, Chory J. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell133, 164–176.

Vanholme R, De Meester B, Ralph J, Boerjan W. 2019. Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology56, 230–239.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research38, e164.

Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T. 2015. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biology16, 108.

Wang Y, Li J. 2008. Molecular basis of plant architecture. Annual Review of Plant Biology59, 253–279.

Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology67, 539–574.

Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. 2023. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Science China (Life Science), 66, 2114–2256.

Xi Y, Yang Y, Yang J, Zhang X, Pan Y, Guo H. 2021. IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in ArabidopsisPLoS Genetics17, e1009384.

Xie M, Muchero W, Bryan A C, Yee K, Guo H B, Zhang J, Tschaplinski T J, Singan V R, Lindquist E, Payyavula R S, Barros-Rios J, Dixon R, Engle N, Sykes R W, Davis M, Jawdy S S, Gunter L E, Thompson O, DiFazio S P, Evans L M, et al. 2018. A 5-enolpyruvylshikimate 3-phosphate synthase functions as a transcriptional repressor in PopulusPlant Cell30, 1645–1660.

Yamaguchi S, Sun T, Kawaide H, Kamiya Y. 1998. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology116, 1271–1278.

Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. 2022. Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology65, 548–569.

Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F. 2019. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications10, 2989.

Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist203, 437–448.

Yanniccari M, Vila-Aiub M, Istilart C, Acciaresi H, Castro A M. 2017. Glyphosate resistance in Perennial Ryegrass (Lolium perenne L.) is associated with a fitness penalty. Weed Science64, 71–79.

Yin R H, Han K, Heller W, Albert A, Dobrev P I, Zazimalova E, Schaffner A R. 2014. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytologist201, 466–475.

Youn J H, Kim T W, Joo S H, Son S H, Roh J, Kim S, Kim T W, Kim S K. 2018. Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in ArabidopsisJournal of Experimental Botany69, 1873–1886.

Zhang C, Sun J L, Jia Y H, Wang J, Xu Z J, Du X M. 2011. Morphological characters, inheritance and response to exogenous hormones of a cotton super-dwarf mutant of Gossypium hirsutumPlant Breeding130, 67–72.

Zhang X, Hou X, Liu Y, Zheng L, Yi Q, Zhang H, Huang X, Zhang J, Hu Y, Yu G, Liu H, Li Y, Huang H, Zhan F, Chen L, Tang J, Huang Y. 2019. Maize brachytic2 (br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region. BMC Plant Biology19, 589.

Zhang Y, Zhang Y, Ge X, Yuan Y, Jin Y, Wang Y, Zhao L, Han X, Hu W, Yang L, Gao C, Wei X, Li F, Yang Z. 2023. Genome-wide association analysis reveals a novel pathway mediated by a dual-TIR domain protein for pathogen resistance in cotton. Genome Biology24, 111.

Zhao C, Ma J, Zhang Y, Yang S, Feng X, Yan J. 2022. The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean. Journal of Integrative Plant Biology64, 995–1006.

Zheng Z, Guo Y, Novak O, Chen W, Ljung K, Noel J P, Chory J. 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants2, 16025.

[1] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[2] HU Mao-long, PU Hui-ming, GAO Jian-qin, LONG Wei-hua, CHEN Feng, ZHOU Xiao-ying, ZHANG Wei, PENG Qi, CHEN Song, ZHANG Jie-fu. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2421-2433.
No Suggested Reading articles found!