Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2511-2524    DOI: 10.1016/j.jia.2023.12.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of QTLs for plant height and branching-related traits in cultivated peanut

Shengzhong Zhang1, Xiaohui Hu1, Feifei Wang1, Huarong Miao1, Chu Ye2, Weiqiang Yang1, Wen Zhong3, Jing Chen1#

1 Shandong Peanut Research Institute, Qingdao 266100, China

2 Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA 31793, United States

3 Shandong Seed Administration Station, Jinan 250100, China

 Highlights 
Five pleiotropic unique QTLs for peanut plant height and branching-related traits were discovered and their genetic bases were mathematically estimated.  
Three major and stable unique QTLs were identified and their candidate genes were further mined.
SNPs linking to these stable QTLs have great potentials to improve plant architectural traits in peanut.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

株高、侧枝长和分枝数是影响花生株型的关键组分性状,对花生的生物量、荚果产量以及机械化作业适配性至关重要。本研究利用包含181个家系的重组自交系群体,开展了3个环境下的表型考察,发现株高、侧枝长和分枝数均表现为连续分布和超亲遗传,其广义遗传率分别为0.870.880.92。基于单环境非条件QTL分析,共检测到35个加性QTL,表型贡献率为4.57%~21.68%。通过两轮meta分析将以上加性QTL整合为24个一致性(consensus)位点和17个特异性(unique)位点,其中5个特异性位点表现为多效性。利用条件QTL分析阐明了多效性位点的遗传基础(多基因连锁或者一因多效)。此外,基于多环境联合分析估算了加性QTL与环境的互作效应,互作效应对株高、侧枝长和分枝数的总贡献率分别达到10.80%11.02%7.89%。本研究在第91016染色体上鉴定到3个稳定主效特异性QTL区段(uq9-3uq10-2 uq16-1),物理区间范围为1.43-1.53Mb,其中参与植物激素合成、信号转导和细胞壁发育的一些基因可能是调控这些性状的候选基因。该研究结果为后续花生株型遗传研究和分子标记辅助育种提供了重要基础。



Abstract  

Plant height (PH), primary lateral branch length (PBL), and branch number (BN) are architectural components impacting peanut pod yield, biomass production, and adaptivity to mechanical harvesting.  In this study, a recombinant inbred population consisting of 181 individual lines was used to determine genetic controls of PH, PBL, and BN across three environments.  Phenotypic data collected from the population demonstrated continuous distributions and transgressive segregation patterns.  Broad-sense heritability of PH, PBL, and BN was found to be 0.87, 0.88, and 0.92, respectively.  Unconditional individual environmental analysis revealed 35 additive QTLs with phenotypic variation explained (PVE) ranging from 4.57 to 21.68%.  A two-round meta-analysis resulted in 24 consensus and 19 unique QTLs.  Five unique QTLs exhibited pleiotropic effects and their genetic bases (pleiotropy or tight linkage) were evaluated.  A joint analysis was performed to estimate the QTL by environment interaction (QEI) effects on PH, PBL, and BN, collectively explaining phenotypic variations of 10.80, 11.02, and 7.89%, respectively.  We identified 3 major and stable QTL regions (uq9-3, uq10-2, and uq16-1) on chromosomes 9, 10, and 16, spanning 1.43–1.53 Mb genomic regions.  Candidate genes involved in phytohormones biosynthesis, signaling, and cell wall development were proposed to regulate these morphological traits.  These results provide valuable information for further genetic studies and the development of molecular markers applicable to peanut architecture improvement.

Keywords:  peanut       plant height        branching        QTL mapping        candidate gene  
Received: 24 September 2023   Online: 15 December 2023   Accepted: 31 October 2023
Fund: 

This research was supported by the Natural Science Foundation of Shandong Province, China (ZR2022MC045), the National Natural Science Foundation of China (32001584, 32201876), the Major Science and Technology Program of Xinjiang Uygur Autonomous Region, China (2022A02008-3), the Breeding Project from Department of Science & Technology of Shandong Province, China (2022LZGC007), the Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2023A06, CXGC2023A39 and CXGC2023A46), and the Major Scientific and Technological Achievements Cultivation Program of Shandong Academy of Agricultural Sciences, China (CXGC2025E02) .

About author:  Shengzhong Zhang, E-mail: 593318769@qq.com; #Correspondence Jing Chen, Tel: +86-532-87631512, E-mail: mianbaohua2008@126.com

Cite this article: 

Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. 2025. Identification of QTLs for plant height and branching-related traits in cultivated peanut. Journal of Integrative Agriculture, 24(7): 2511-2524.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Mastuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science309, 741–745.

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell115, 591–602.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaeaNature Genetics51, 877–884.

Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. 2016. A developmental transcriptome map for allotetraploid Arachis hypogaeaFrontiers in Plant Science7, 1446.

Fang Y, Zhang X, Liu H, Wu J, Qi F, Sun Z, Zheng Z, Dong W, Huang B. 2023. Identification of quantitative trait loci and development of diagnostic markers for growth habit traits in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics136, 105.

Fonceka D, Tossim H A, Rivallan R, Vignes H, Lacut E, de Bellis F, Faye I, Ndoye O, Leal-Bertioli S C, Valls J F, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. 2012. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE7, e48642.

Hake A A, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak S N, Lingaraju S, Patil P V, Nadaf H L, Gowda M V C, Bhat R S. 2017. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE12, e0186113.

Hill W G, Zhang X S. 2012. On the pleiotropic structure of the genotype–phenotype map and the evolvability of complex organisms. Genetics190, 1131–1137.

Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. 2015. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics128, 1103–1115.

Huang L, Ren X, Wu B, Li X, Chen W, Zhou X, Chen Y, Pandey M K, Jiao Y, Luo H, Lei Y, Varshney R K, Liao B, Jiang H. 2016. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports6, 39478.

Jiang H, Huang L, Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L, Liao B. 2014. Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. Journal of Integrative Plant Biology56, 159–169.

Lenhard M, Laux T. 2003. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development130, 3163–3173.

Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen C Y. 2019. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Frontiers in Plant Science10, 745.

Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. 2011. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal9, 1002–1013.

Li Y, Li L, Zhang X, Zhang K, Ma D, Liu J, Wang X, Liu F, Wan Y. 2017. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica213, 57.

Liao Z, Yu H, Duan J, Yuan K, Yu C, Meng X, Kou L, Chen M, Jing Y, Liu G, Smith S M, Li J. 2019. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications10, 2738.

Lv J, Liu N, Guo J, Xu Z, Li X, Li Z, Luo H, Ren X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Tu J, Jiang H, Liao B. 2018. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Frontiers in Plant Science9, 684.

Mackay I J, Cockram J, Howell P, Powell W. 2021. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal19, 26–34.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. 2001. bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. The Plant Cell13, 351–367.

Schoof H, Lenhard M, Haecker A, Mayer K F, Jurgens G, Laux T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell100, 635–644.

Shen Y, Xiang Y, Xu E, Ge X, Li Z. 2018. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Frontiers in Plant Science9, 390.

Sheng P, Wu F, Tan J, Zhang H, Ma W, Chen L, Wang J, Wang J, Zhu S, Guo X, Wang J, Zhang X, Cheng Z, Bao Y, Wu C, Liu X, Wan J. 2017. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Molecular Biology92, 209–222.

Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, et al. 2012. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology12, 80.

Sigalas P P, Buchner P, Thomas S G, Jamois F, Arkoun M, Yvin J C, Bennett M J, Hawkesford M J. 2023. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat. Journal of Experimental Botany74, 1890–1910.

Song Y, You J, Xiong L. 2009. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Molecular Biology70, 297–309.

Sosnowski O, Charcosset A, Joets J. 2012. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics28, 2082–2083.

Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America99, 9043–9048.

Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. 2021. Gibberellins orchestrate panicle architecture mediated by DELLA–KNOX signaling in rice. Plant Biotechnology Journal19, 2304–2318.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell17, 776–790.

Tang J, Tian X, Mei E, He M, Gao J, Yu J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Zhao Z, Wang C, Bu Q. 2022. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. The Plant Cell34, 4495–4515.

Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. 2012. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proceedings of the National Academy of Sciences of the United States of America109, 15947–15952.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Wagner G P, Zhang J. 2011. The pleiotropic structure of the genotype–phenotype map: The evolvability of complex organisms. Nature Reviews Genetics12, 204–213.

Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y. 2016a. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genetics12, e1005844.

Wang D, Qin Y, Fang J, Yuan S, Peng L, Zhao J, Li X. 2016b. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS ONE11, e0153993.

Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL × environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal7, 249–260.

Wang S, Basten C J, Zeng Z. 2012. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. [2017-8-11]. http://statgen.ncsu. edu/qtlcart/WQTLCart.htm

Wang X, Liang Y, Li L, Gong C, Wang H, Huang X, Li S, Deng Q, Zhu J, Zheng A, Li P, Wang S. 2015. Identification and cloning of tillering-related genes OsMAX1 in rice. Rice Science22, 255–263.

Wang Y, Li J. 2008. Molecular basis of plant architecture. Annual Review of Plant Biology59, 253–279.

Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. 2018. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Frontiers in Plant Science9, 827.

Würschum T, Langer S M, Longin C F H. 2015. Genetic control of plant height in European winter wheat cultivars. Theoretical and Applied Genetics128, 865–874.

Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology143, 1362–1371.

Yang Y, Hu Y, Li P, Hancock J T, Hu X. 2023. Research progress and application of plant branching. Phyton-International Journal of Experimental Botany92, 679–689.

Yin D M, Shang M Z, Cui D Q. 2006. Studies on genetic analysis of major agronomic characters in peanut. Chinese Agriculture Science Bulletin22, 261–265. (in Chinese)

Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J. 2016. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). The Crop Journal4, 220–228.

Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. 2019. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology19, 537.

Zhang S, Hu X, Wang F, Chu Y, Yang W, Xu S, Wang S, Wu L, Yu H, Miao H, Fu C, Chen J. 2023. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.). Journal of Integrative Agriculture, 22, 2323–2334.

Zhang S, Wu T, Liu S, Liu X, Jiang L, Wan J. 2016. Disruption of OsARF19 is critical for floral organ development and plant architecture in rice (Oryza sativa L.). Plant Molecular Biology Reporter34, 748–760.

Zhu D, Liu Y, Jin M, Chen G, Prodanvovic S, Yan Y. 2019. Expression and function analysis of wheat expasin genes EXPA2 and EXPB1Genetika51, 261–274.

[1] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[2] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[3] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[4] Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis[J]. >Journal of Integrative Agriculture, 2025, 24(1): 339-352.
[5] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[6] Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang. Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[7] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[8] Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang.

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L. [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1494-1506.

[9] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[10] Xiaoxue Liang, Jiyu Wang, Lei Cao, Xuanyu Du, Junhao Qiang, Wenlong Li, Panqiao Wang, Juan Hou, Xiang Li, Wenwen Mao, Huayu Zhu, Luming Yang, Qiong Li, Jianbin Hu. An allelic variation in the promoter of the LRR-RLK gene, qSS6.1, is associated with melon seed size[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3522-3536.
[11] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[12] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[13] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[14] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[15] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
No Suggested Reading articles found!