Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3472-3486    DOI: 10.1016/j.jia.2024.04.024
Section 3: Cotton molecular design breeding Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)
Liang Ma1*, Tingli Hu1*, Meng Kang1*, Xiaokang Fu1, Pengyun Chen1, Fei Wei1, Hongliang Jian1, Xiaoyan Lü1, Meng Zhang2#, Yonglin Yang3# 
1 State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
2 School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
3 Shihezi Academy of Agricultural Sciences, Shihezi 832099, China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
培育早熟棉品种是提高我国复种指数、缓解粮棉争地矛盾的有效途径。本研究旨在挖掘与棉花早熟性状相关的数量性状位点(QTL)和候选基因,包括全生育期(WGP)、开花时间(FT)、第一结果枝节位(NFFB)、第一果枝节位高度(HNFFB)和株高(PH)。以早熟棉品种中棉所50和晚熟棉品种国欣棉11为亲本分别在2020年和2021年构建得到两个F2分离群体,用于BSA-seq和QTL定位。在2020年,基于F2分离群体的表型数据,构建极端混池进行BSA-seq测序,分析发现早熟相关性状的候选区间位于D03染色体上。为进一步缩小候选区间,我们开发得到22个多态性InDel标记,在2020年和2021年群体中分别检测到5个和4个早熟性状相关的QTL位点,这些QTL位于两个候选区域内(InDel_G286-InDel_G144和InDel_G24-InDel_G43)。两个候选区间内,三个基因(GH_D03G0451GH_D03GO649GH_D03G1180)的外显子在两个亲本中存在非同义突变,一个基因(GH_D03G0450)的上游序列在两个亲本中存在SNP变异。上述四个基因在花器官中均具有较高的表达。在花芽分化阶段,GH_D03G0451GH_D03GO649GH_D03G1180在中棉所50中的表达量显著高于国欣棉11,而GH_D03G0450则表现出相反的趋势。对GH_D03G0451的进一步功能验证显示沉默GH_D03GO451的植株表现出开花延迟。本研究将为棉花早熟分子改良提供理论支撑和基因资源。


Abstract  
Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.  In the present study, we aimed to identify upland cotton quantitative trait loci (QTLs) and candidate genes related to early-maturity traits, including whole growth period (WGP), flowering timing (FT), node of the first fruiting branch (NFFB), height of the node of the first fruiting branch (HNFFB), and plant height (PH).  An early-maturing variety, CCRI50, and a late-maturing variety, Guoxinmian 11, were crossed to obtain biparental populations.  These populations were used to map QTLs for the early-maturity traits for two years (2020 and 2021).  With BSA-seq analysis based on the data of population 2020, the candidate regions related to early maturity were found to be located on chromosome D03.  We then developed 22 polymorphic insertions or deletions (InDel) markers to further narrow down the candidate regions, resulting in the detection of five and four QTLs in the 2020 and 2021 populations, respectively.  According to the results of QTL mapping, two candidate regions (InDel_G286-InDel_G144 and InDel_G24-InDel_G43) were detected.  In these regions, three genes (GH_D03G0451, GH_D03G0649, and GH_D03G1180) have non-synonymous mutations in their exons and one gene (GH_D03G0450) has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.  These four genes also showed dominant expression in the floral organs.  The expression levels of GH_D03G0451, GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages, while GH_D03G0450 showed the opposite trend.  Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.  The results suggest that these are the candidate genes for cotton early maturity, and they may be used for breeding early-maturity cotton varieties.


Keywords:  cotton genomics       early maturity traits        BSA-seq        QTL mapping        molecular breeding  
Received: 02 January 2024   Accepted: 11 March 2024
Fund: 
This study was funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (2022D01B222), the China Agriculture Research System (CARS-15-06), and the Key R&D Project of Eight Division of Xinjiang Production and Construction Corps, China (2021NY01).  
About author:  Liang Ma, E-mail: maliang3417@163.com; #Correspondence Meng Zhang, Tel: +86-373-3040337, E-mail: mengz1115@163.com; Yonglin Yang, Tel: +86-993-5665026, E-mail: 13095092255@163.com * These authors contributed equally to this study.

Cite this article: 

Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. 2024. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 23(10): 3472-3486.

De Abreu-Neto J B, Turchetto-Zolet A C, de Oliveira L F, Zanettini M H, Margis-Pinheiro M. 2013. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. FEBS Journal280, 1604–1616.

Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K. 2009. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Molecular Biology69, 213–226.

Beine-Golovchuk O, Firmino A, Dabrowska A, Schmidt S, Erban A, Walther D, Zuther E, Hincha D K, Kopka J. 2018. Plant temperature acclimation and growth rely on cytosolic ribosome biogenesis factor homologs. Plant Physiology176, 2251–2276.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant16, 1733–1742.

Cheng S, Chen P, Su Z, Ma L, Hao P, Zhang J, Ma Q, Liu G, Liu J, Wang H, Wei H, Yu S. 2021. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.). Plant Biotechnology Journal19, 153–166.

Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. 2021. Rapid mining of candidate genes for Verticillium wilt resistance in cotton based on BSA-Seq analysis. Frontiers in Plant Science12, 703011.

Fan S L, X Y S, Song M Z, Yuan R H. 2006. Construction of molecular linkage map and QTL mapping for earliness in short-season cotton. Cotton18, 135–139. (in Chinese)

Guo Y, Mccarty J C, Jenkins J N, An C, Saha S. 2009. Genetic detection of node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland cotton. Euphytica166, 317–329.

Guo Y, Mccarty J C, Jenkins J N, Saha S. 2008. QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701. Euphytica163, 113–122.

Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. 2020. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. Royal Society Open Science7, 201081.

Hao P, Wu A, Chen P, Wang H, Ma L, Wei H, Yu S. 2021. GhLUX1 and GhELF3 are two components of the circadian clock that regulate flowering time of Gossypium hirsutumFrontiers in Plant Science12, 691489.

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J, Wang K, Wang Q, Wu H, Mei G, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739–748.

Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. 2018. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37MdPP2CH and MdALMTIIPlant Journal95, 427–443.

Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M, Wusiman N, Yu S. 2016. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics17, 909.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 121–357.

Klein H, Xiao Y, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M. 2018. Bulked-Segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3 (Bethesda), 8, 3583–3592.

Kushanov F N, Buriev Z T, Shermatov S E, Turaev O S, Norov T M, Pepper A E, Saha S, Ulloa M, Yu J Z, Jenkins J N, Abdukarimov A, Abdurakhmonov I Y. 2017. QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt. PLoS ONE12, e0186240.

Lee S B, Kim J E, Kim H T, Lee G M, Kim B S, Lee J M. 2020. Genetic mapping of the c1 locus by GBS-based BSA-seq revealed Pseudo-Response Regulator 2 as a candidate gene controlling pepper fruit color. Theoretical and Applied Genetics133, 1897–1910.

Leinonen R, Sugawara H, Shumway M. 2011. The sequence read archive. Nucleic Acids Research39, D19–D21.

Li C, Song L, Zhao H, Xia Z, Jia Z, Wang X, Dong N, Wang Q. 2014. Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers. Journal of Agricultural Science152, 275–287.

Li C, Wang C, Dong N, Wang X, Zhao H, Converse R, Xia Z, Wang R, Wang Q. 2012. QTL detection for node of first fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica188, 441–451.

Li C Q, Wang X Y, Dong N, Zhao H H, Xia Z, Wang R, Converse R L, Wang Q L. 2013. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses. Breeding Science63, 154–163.

Li K, Li Z, Wei Y. 2010. Correlation of early maturing traits and QTL mapping in cotton. Xinjiang Agricultural Science47, 78–81. (in Chinese)

Li K, Zhou X, Sun X, Li G, Hou L, Zhao S, Zhao C, Ma C, Li P, Wang X. 2021. Coordination between MIDASIN 1-mediated ribosome biogenesis and auxin modulates plant development. Journal of Experimental Botany72, 2501–2513.

Li L, Zhang C, Huang J, Liu Q, Wei H, Wang H, Liu G, Gu L, Yu S. 2021. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal19, 109–123.

Li L, Zhao S, Su J, Fan S, Pang C, Wei H, Wang H, Gu L, Zhang C, Liu G, Yu D, Liu Q, Zhang X, Yu S. 2017. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE12, e182918.

Li R, Jiang H, Zhang Z, Zhao Y, Xie J, Wang Q, Zheng H, Hou L, Xiong X, Xin D, Hu Z, Liu C, Wu X, Chen Q. 2019. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. International Journal of Molecular Sciences21, 42.

Liu R, Ai N, Zhu X, Liu F, Zhang T. 2014. Genetic analysis of plant height using two immortalized populations of “CRI12×J8891” in Gossypium hirsutum L. Euphytica196, 51–61.

Lu J L, Chen C, Liu P, He Z H, Xia X C. 2016. Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Journal of Integrative Agriculture15, 2461–2468.

Lv W Y, Gao Y, Pan A, Zhou J, Du Z, Yuan Y, Chen Y, Wang F R, Jun Z. 2022. QTLs mapping for early-maturity related traits and preliminary identification of related genes in upland cotton. Journal of Plant Genetic Resources23, 800–810.

Ma L, An R, Jiang L, Zhang C, Li Z, Zou C, Yang C, Pan G, Lubberstedt T, Shen Y. 2022. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. Journal of Hazardous Materials430, 128457.

Maidment J, Franceschetti M, Maqbool A, Saitoh H, Jantasuriyarat C, Kamoun S, Terauchi R, Banfield M J. 2021. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. Journal of Biological Chemistry296, 100371.

Mao G, Wei H, Hu W, Ma Q, Zhang M, Wang H, Yu S. 2019. Fine mapping and molecular characterization of the virescent gene vsp in upland cotton (Gossypium hirsutum). Theoretical and Applied Genetics132, 2069–2086.

Missbach S, Weis B L, Martin R, Simm S, Bohnsack M T, Schleiff E. 2013. 40S ribosome biogenesis co-factors are essential for gametophyte and embryo development. PLoS ONE8, e54084.

Ochar K, Su B, Zhou M, Liu Z, Gao H, Lamlom S F, Qiu L. 2022. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. Journal of Integrative Agriculture21, 3524–3539.

Pertea M, Pertea G M, Antonescu C M, Chang T, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology33, 290.

Pujol M, Alexiou K G, Fontaine A S, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda M A. 2019. Mapping Cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Frontiers in Plant Science10, 1583.

Rani A, Kumar V, Gill B S, Rathi P, Shukla S, Singh R K, Husain S M. 2017. Linkage mapping of Mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breeding Scienc67, 95–100.

Richmond T R, Radwan S. 1962. A comparative study of seven methods of measuring earliness of crop maturity in cotton. Crop Science2, 397–400.

Richmond T R, Ray L L. 1966. Product-quantity measures of earliness of crop maturity in cotton. Crop Science6, 235–239.

Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J. 2015. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific Ghirsutum×Gbarbadense populations. Molecular Genetics and Genomics290, 1003–1025.

Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. 2019. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. Plant Journal99, 494–505.

Song Q, Zhang T, Stelly D M, Chen Z J. 2017. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology18, 99.

Su J, Pang C, Wei H, Li L, Liang B, Wang C, Song M, Wang H, Zhao S, Jia X, Mao G, Huang L, Geng D, Wang C, Fan S, Yu S. 2016. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics17, 687.

Toller A, Brownfield L, Neu C, Twell D, Schulze-Lefert P. 2008. Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. Plant Journal54, 911–923.

Valverde F. 2011. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. Journal of Experimental Botany62, 2453–2463.

Vogel G, Laplant K E, Mazourek M, Gore M A, Smart C D. 2021. A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theoretical and Applied Genetics134, 1015–1031.

Wang C, Liu J, Xie X, Wang J, Ma Q, Chen P, Yang D, Ma X, Hao F, Su J. 2022. GhAP1-D3 positively regulates flowering time and early maturity with no yield and fiber quality penalties in upland cotton. Journal of Integrative Plant Biology65, 985–1002.

Wang C N, Luan F S, Liu H Y, Davis A R, Zhang Q A, Dai Z Y, Liu S. 2021. Mapping and predicting a candidate gene for flesh color in watermelon. Journal of Integrative Agriculture20, 2100–2111.

Yu S X, Huang Z M. 1990. Inheritance analysis on earliness components of short season cotton varieties in GhirsutumScientia Agricultura Sinica23, 48–54. (in Chinese)

Zaveska D L, Honys D. 2017. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLoS ONE12, e187331.

Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. 2020. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species. International Journal of Molecular Sciences21, 6191.

Zhang J. 2021. Functional analyses of GhHDA5 and GhHDA6 genes in early maturity of upland cotton. Ph D thesis, Chinese Academy of Agricultural Sciences, China. (in Chinese)

Zhao Y, Chen W, Cui Y, Sang X, Lu J, Jing H, Wang W, Zhao P, Wang H. 2021. Detection of candidate genes and development of KASP markers for Verticillium wilt resistance by combining genome-wide association study, QTL-seq and transcriptome sequencing in cotton. Theoretical and Applied Genetics134, 1063–1081.

Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L. 2019. A single nucleotide deletion in an ABC transporter gene leads to a dwarf phenotype in watermelon. Frontiers in Plant Science10, 1399.

Zschiesche W, Barth O, Daniel K, B Hme S, Rausche J, Humbeck K. 2015. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thalianaNew Phytologist207, 1084–1096.

No related articles found!
No Suggested Reading articles found!