Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2525-2539    DOI: 10.1016/j.jia.2023.12.022
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar

Jianan Li1*, Weidong Li1*, Wenjie Ou1, Waqas Ahmed1, Mohsin Mahmood1, Ahmed S. M. Elnahal2, Haider Sultan3, Zhan Xin1, Sajid Mehmood1#

1 Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China 

2 Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

3 College of Tropical Crops, Hainan University, Haikou 570228, China

 Highlights 
Phosphorous (P)-loaded biochar (PBC) boosted rice growth under vanadium stress, increasing shoot and root weights by 82.86 and 53.33%.
Biochar enhanced chlorophyll content and antioxidant enzyme activity, with PBC showing the strongest effects.
As-is biochar (BC) and PBC promoted biomass accumulation, warranting further study on underlying mechanisms.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
本研究旨在评价原状生物炭(BC) (3%)和载磷生物炭(PBC)(3%)在钒(V) (60 mg L-1)胁迫下对水稻生长情况和生理生化指标的影响。结果表明,单V处理情况下水稻植株的生长情况参数有所下降。相反,BC和PBC的加入引起了水稻生理性状的显著改善。PBC在V胁迫环境下表现良好,受试水稻地上部分鲜重和根鲜重分别比单V处理组增加82.86%和53.33%。叶片叶绿素相对含量(SPAD)比单V处理组植株提高了13.05%。此外,植物茎部和根部的抗氧化酶活性均显著高于单V处理组植株,如超氧化物歧化酶(SOD)(56.11&117.35%)、过氧化氢酶(CAT)(34.19&35.77%)和过氧化物酶(POD)(25.90&18.74%)。以上发现表明,使用BC和PBC可能触发分生组织细胞生物量积累的生物化学途径。然而,需要进一步的研究来阐明促进这种生长的潜在机制。


Abstract  

This investigation evaluated the impact of as-is biochar (BC) and phosphorous (P)-loaded biochar (PBC) (3%) on the growth and biochemical characteristics of rice under exposure to vanadium (V) (60 mg L–1).  The results indicate that rice plants exposed to a V-only treatment experienced declines in several growth parameters.  Conversely, the inclusion of BC and PBC caused noteworthy increases in physiological traits.  PBC performed well in stress environments.  Specifically, the shoot and root fresh weights increased by 82.86 and 53.33%, respectively, when compared to the V-only treatment.  In addition, the SPAD chlorophyll of the shoot increased by 13.05% relative to the V-amended plants.  Moreover, including BC and PBC improved the antioxidant enzyme traits of plant shoot and root, such as significant increases in superoxide dismutase (SOD by 56.11 and 117.35%), catalase (CAT by 34.19 and 35.77%), and peroxidase (POD by 25.90 and 18.74%) when compared to V-only amended plants, respectively.  These findings strongly suggest that the application of BC and PBC can trigger biochemical pathways that facilitate biomass accumulation in meristematic cells.  However, further investigations are required to elucidate the underlying mechanisms responsible for this growth promotion.

Keywords:  biochar       phosphorous        rice        vanadium contamination        growth parameters  
Received: 04 September 2023   Online: 27 December 2023   Accepted: 18 November 2023
Fund: 
This study was funded by the Launch Fund of Hainan University High Level Talent, China (RZ2100003226) and the National Natural Science Foundation of China (NSFC-31860728). 
About author:  Jianan Li, E-mail: ljn1998h@163.com; Weidong Li, E-mail: weidongli@hainanu.edu.cn; #Correspondence Sajid Mehmood, Mobile: +86-17508950252, E-mail: drsajid@hainanu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. 2025. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar. Journal of Integrative Agriculture, 24(7): 2525-2539.

Aebi H. 1984. Catalase in vitroMethods in Enzymology105, 121–126.

Agegnehu G, Bass A M, Nelson P N, Muirhead B, Wright G, Bird M I. 2015. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems & Environment213, 72–85.

Ahmad M, Ahmad M, El-Naggar A H, Usman A R A, Abdul J A, Vithanage M, Elfaki J, Al-Faraj A, Al-Wabel M I. 2018a. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere28, 873–883.

Ahmad M, Usman A R A, Al-Faraj A S, Ahmad M, Sallam A, Al-Wabel M I. 2018b. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere194, 327–339.

Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu W, Jiang J. 2020. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment712, 135637.

Ajeya K V., Sadhasivam T, Kurkuri M D, Kang U, Park I S, Park W S, Kim S C, Jung H Y. 2020. Recovery of spent VOSOusing an organic ligand for vanadium redox flow battery applications. Journal of Hazardous Materials399, 123047.

Akhtar S S, Li G, Andersen M N, Liu F. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management138, 37–44.

Altaf M M, Diao X, Rehman A, Imtiaz M, Shakoor A, Altaf M A, Younis H, Fu P, Ghani M U. 2020. Effect of vanadium on growth, photosynthesis, reactive oxygen species, antioxidant enzymes, and cell death of rice. Journal of Soil Science and Plant Nutrition20, 2643–2656.

Altaf M M, Diao X P, Altaf M A, ur Rehman A, Shakoor A, Khan L U, Jan B L, Ahmed P. 2022. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. Journal of Hazardous Materials436, 129145.

An F, Li G, Li Q X, Li K, Carvalho L J C B, Ou W, Chen S. 2016. The comparatively proteomic analysis in response to cold stress in cassava plantlets. Plant Molecular Biology Reporter34, 1095–1110.

ASTM Standard D1762–84. 2007. Chemical Analysis of Wood Charcoal. ASTM International, West Conshohocken, PA, USA.

Begum P, Ikhtiari R, Fugetsu B. 2011. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49, 3907–3919.

Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72, 248–254.

Dionisio-Sese M L, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science135, 1–9.

El-Esawi M A, Al-Ghamdi A A, Ali H M, Alayafi A A. 2019. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environmental and Experimental Botany159, 55–65.

Farhangi-Abriz S, Torabian S. 2018. Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. Journal of Plant Growth Regulation37, 591–601.

García A C, Tavares O C H, Oliveira D F. 2020. Biochar as agricultural alternative to protect the rice plant growth in fragile sandy soil contaminated with cadmium. Biocatalysis and Agricultural Biotechnology29, 101829.

Ghanim B, Murnane J G, O’Donoghue L, Courtney R, Pembroke J T, O’Dwyer T F. Removal of vanadium from aqueous solution using a red mud modified saw dust biochar. Journal of Water Process Engineering33, 101076.

Gummow B. 2019. Vanadium: Environmental pollution and health effects. In: Jerome O N, ed., Encyclopedia of Environmental Health. Elsevier, Amsterdam, the Netherlands. pp. 628–636.

Guo H, Zhang Q, Chen Y, Lu H. 2023. Effects of biochar on plant growth and hydro-chemical properties of recycled concrete aggregate. Science of the Total Environment882, 163557.

Hagemann N, Joseph S, Schmidt H P, Kammann C I, Harter J, Borch T, Young R B, Varga K, Taherymoosavi S, Elliott K W, McKenna A, Albu M, Mayrhofer C, Obst M, Conte P, Dieguez-Alonso A, Orsetti S, Subdiaga E, Behrens S, Kappler A. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communication8, 1089.

Hartung S, Bucher N, Chen H Y, Al-Oweini R, Sreejith S, Borah P, Yanli Z, Kortz U, Stimming U, Hoster H E, Srinivasan M. 2015. Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. Journal of Power Sources288, 270–277.

Heath R L, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics125, 189–198.

Hmid A, Al-Chami Z, Sillen W, De-Vocht A, Vangronsveld J. 2015. Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils. Environmental Science and Pollution Research22, 1444–1456.

Hou M, Hu C, Xiong L, Lu C. 2013. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensisMicrochemical Journal110, 575–578.

Ikram M, Han X, Zuo J F, Song J, Han C Y, Zhang Y W, Zhang Y M. 2020. Identification of QTNs and their candidate genes for 100-seed weight in soybean (Glycine max L.) using multi-locus genome-wide association studies. Genes (Basel), 11, 1–22.

Imtiaz M, Ashraf M, Rizwan M S, Nawaz M A, Rizwan M, Mehmood S, Yousaf B, Yuan Y, Ditta A, Mumtaz M A, Ali M, Mahmood S, Tu S. 2018a. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems. Ecotoxicology and Environmental Safety158, 139–144.

Imtiaz M, Mushtaq M A, Nawaz M A, Ashraf M, Rizwan M S, Mehmood S, Aziz O, Rizwan M, Virk M S, Shakeel Q, Ijaz R, Androutsopoulos V P, Tsatsakis A M, Coleman M D. 2018b. Physiological and anthocyanin biosynthesis genes response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity. Environmental Toxicology and Pharmacology62, 20–29.

Imtiaz M, Mushtaq M A, Rizwan M S, Arif M S, Yousaf B, Ashraf M, Shuanglian X, Rizwan M, Mehmood S, Tu S. 2016. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environmental Science and Pollution Research23, 19787–19796.

Ivanov A S, Parker B F, Zhang Z, Aguila B, Sun Q, Ma S, Jansone-Popova S, Arnold J, Mayes R T, Dai S, Bryantsev V S, Rao L, Popovs I. 2019. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communication10, 819.

Kaplan D I, Adriano D C, Carlson C L, Sajwan K S. 1990. Vanadium: Toxicity and accumulation by beans. Water Air and Soil Pollution49, 81–91.

Kono Y. 1978. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics186, 189–195.

Lehmann J. 2009. Biochar for environmental management: Science and technology. In: Lehmann J, Joseph S M, eds., Forest Policy and Economics, Earthscan, London, UK. pp. 535–536.

Li H, Dong X, Da-Silva E B, de Oliveira L M, Chen Y, Ma L Q. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere178, 466–478.

Lichtenthaler H K, Wellburn A R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions11, 591–592.

Liu Y, Dai Q, Jin X, Dong X, Peng J, Wu M, Liang N, Pan B, Xing B. 2018. Negative impacts of biochars on urease activity: High pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? Environmental Science and Technology52, 12740–12747.

Martínez-Gómez Á, Poveda J, Escobar C. 2022. Overview of the use of biochar from main cereals to stimulate plant growth. Frontiers in Plant Science13, 912264.

Matthews R. 1897. Methods of enzymatic analysis. Journal of Clinical Pathology40, 934.

Mehmood S, Ahmed W, Alatalo J M, Mahmood M, Imtiaz M, Ditta A, Ali E F, Abdelrehman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen S M, Li W. 2022. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. Science of the Total Environment826, 154043.

Mehmood S, Ahmed W, Ikram M, Imtiaz M, Mahmood S, Tu S, Chen D. 2020. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants9, 1–25.

Mehmood S, Ahmed W, Rizwan M, Imtiaz M, Elnahal A S, Ditta A M A, Irshad S, Ikram M, Li W. 2021. Comparative efficacy of raw and HNO3-modified biochar derived from rice straw on vanadium transformation and its uptake by rice (Oryza sativa L.): Insights from photosynthesis, antioxidative response, and gene-expression profile. Environmental Pollution289, 117916.

Mehmood S, Rizwan M, Bashir S, Ditta A, Aziz O, Yong L Z, Dai Z, Akmal M, Ahmed W, Adeel M, Imtiaz M, Tu S. 2018. Comparative effects of biochar, slag and Ferrous–Mn ore on lead and cadmium immobilization in soil. Bulletin of Environmental Contamination and Toxicology100, 286–292.

Mohidem N A, Hashim N, Shamsudin R, Man H C. 2022. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture (Switzerland), 12, 741.

Muthayya S, Sugimoto J D, Montgomery S, Maberly G F. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences1324, 7–14.

Naeem A, Westerhoff P, Mustafa S. 2007. Vanadium removal by metal (hydr)oxide adsorbents. Water Research14, 1596–1602.

Naeem M A, Shabbir A, Amjad M, Abbas G, Imran M, Murtaza B, Tahir M, Ahmad M. 2020. Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicology and Environmental Safety191, 110218.

Nawaz M A, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology220, 115–127.

Onasanya R O, Aiyelari O P, Onasanya A, Nwilene F E, Oyelakin O O. 2009. Effect of different levels of nitrogen and phosphorus fertilizers on the growth and yield of maize (Zea mays L.) in Southwest Nigeria. International Journal of Agricultural Research4, 193–203.

Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A R, Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils48, 271–284.

Rawat J, Saxena J, Sanwal P. 2019. Biochar: A austainable approach for improving plant growth and soil properties. In: Biochar - An Imperative Amendment for Soil and the Environment. IntechOpen, London, United Kingdom.

Reijonen I, Metzler M, Hartikainen H. 2016. Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment. Environmental Pollution210, 371–379.

Rizwan M, Ali S, Qayyum M F, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok Y S. 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research23, 2230–2248.

Rychter A M, Rao I M, Cardoso J A. 2016. Role of phosphorus in photosynthetic carbon assimilation and partitioning. In: Handbook of Photosynthesis, 3rd ed. CRC Press, London, UK. pp. 603–625.

Shaheen S M, Alessi D S, Tack F M G, Ok Y S, Kim K H, Gustafsson J P, Sparks D L, Rinklebe J. 2019. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications - A review. Advances in Colloid and Interface Science265, 1–13.

Singh B, Singh B P, Cowie A L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research48, 516–525.

Soltanpour P N, Schwab A P. 1977. A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils. Communications in Soil Science and Plant Analysis8, 195–207.

Sun R L, Zhou Q X, Sun F H, Jin C X. 2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany60, 468–476.

Tang E, Liao W, Thomas S C. 2023. Optimizing biochar particle size for plant growth and mitigation of soil salinization. Agronomy13, 1394.

Tewari R K, Kumar P, Sharma P N. 2006. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta223, 1145–1153.

USEPA (United States Environmental Protection Agency). 2021. Regional screening level (RSL) summary table. [2021-11-20]. https://www.epa.gov

Usman A R A, Abduljabbar A, Vithanage M, Ok Y S, Ahmad M, Ahmad M, Elfaki J, Abdulazeem S S, Al-Wabel M I. 2015. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis115, 392–400.

Vachirapatama N, Jirakiattikul Y, Dicinoski G, Townsend A T, Haddad P R. 2011. Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin Journal of Science and Technology33, 255–261.

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Science151, 59–66.

Wang R Z, Huang D L, Liu Y G, Zhang C, Lai C, Zeng G M, Cheng M, Gong X M, Wan J, Luo H. 2018. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresource Technology261, 265–271.

Xu C Y, Bai S H, Hao Y, Rachaputi R C N, Xu Z, Wallace H M. 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. Journal of Soils and Sediments15, 2220–2231.

Yaashikaa P R, Kumar P S, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports28, e00570.

Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai R. 2017. Current status and associated human health risk of vanadium in soil in China. Chemosphere171, 635–643.

Yen W J, Chyau C C, Lee C P, Chu H L, Chang L W, Duh P D. 2013. Cytoprotective effect of white tea against H2O 2-induced oxidative stress in vitroFood Chemistry141, 4107–4114.

Yuan Y, Imtiaz M, Rizwan M, Dong X, Tu S. 2020. Effect of vanadium on germination, growth and activities of amylase and antioxidant enzymes in genotypes of rice. International Journal of Environmental Science and Technology17, 383–394.

Zhang D, Pan G, Wu G, Kibue G W, Li L, Zhang X, Zheng J, Zheng J, Cheng K, Joseph S, Liu X. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere142, 106–113.

Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. 2015. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management153, 68–73.

Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan N S, Pei J, Huang H. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research20, 8472–8483.

Zhao M, Lin Y, Chen H. 2020. Improving nutritional quality of rice for human health. Theoretical and Applied Genetics133, 1397–1413.

Zulkarnaini Z M, Sakimin S Z, Mohamed M T M, Jaafar H Z E. 2019. Relationship between chlorophyll content and soil plant analytical development values in two cultivars of fig (Ficus carica L.) as brassinolide effect at an open field. Earth and Environmental Science250, 012025.

Zwolak I. 2020. Protective Effects of Dietary Antioxidants against Vanadium-induced toxicity: A review. Oxidative Medicine and Cellular Longevity2020, 1–14.

[1] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[2] Jinwen Pang, Zhonghong Tian, Mengjie Zhang, Yuhao Wang, Tianxiang Qi, Qilin Zhang, Enke Liu, Weijun Zhang, Xiaolong Ren, Zhikuan Jia, Kadambot H. M. Siddique, Peng Zhang. Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland: The promising role of biochar application with biodegradable film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(2): 517-526.
[3] Heng Wan, Zhenhua Wei, Chunshuo Liu, Xin Yang, Yaosheng Wang, Fulai Liu. Biochar amendment modulates xylem ionic constituents and ABA signaling: Its implications in enhancing water-use efficiency of maize (Zea mays L.) under reduced irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(1): 132-146.
[4] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[5] Jinxia Wang, Qiu Huang, Kai Peng, Dayang Yang, Guozhen Wei, Yunfei Ren, Yixuan Wang, Xiukang Wang, Nangia Vinay, Shikun Sun, Yanming Yang, Fei Mo. Biochar induced trade-offs and synergies between ecosystem services and crop productivity[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3882-3895.
[6] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[7] YUAN Hong-zhao, ZHU Zhen-ke, WEI Xiao-meng, LIU Shou-long, PENG Pei-qin, Anna Gunina, SHEN Jian-lin, Yakov Kuzyakov, GE Ti-da, WU Jin-shui, WANG Jiu-rong. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1474-1485.
[8] CHEN Xue-jiao, LIN Qi-mei, Muhammad Rizwan, ZHAO Xiao-rong, LI Gui-tong. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1486-1495.
[9] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[10] SHI Ren-yong, LI Jiu-yu, NI Ni, XU Ren-kou. Understanding the biochar’s role in ameliorating soil acidity[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1508-1517.
[11] HUANG Min, FAN Long, JIANG Li-geng, YANG Shu-ying, ZOU Ying-bin, Norman Uphoff. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. >Journal of Integrative Agriculture, 2019, 18(3): 563-570.
[12] ZHU Qian, KONG Ling-jian, SHAN Yu-zi, YAO Xing-dong, ZHANG Hui-jun, XIE Fu-ti, AO Xue. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2242-2254.
[13] CHEN Zhi-liang, ZHANG Jian-qiang, HUANG Ling, YUAN Zhi-hui, LI Zhao-jun, LIU Min-chao. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. >Journal of Integrative Agriculture, 2019, 18(1): 201-210.
[14] CUI Yue-feng, MENG Jun, WANG Qing-xiang, ZHANG Wei-ming, CHENG Xiao-yi, CHEN Wen-fu. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1064-1074.
[15] JIANG Lin-lin, HAN Guang-ming, LAN Yu, LIU Sai-nan, GAO Ji-ping, YANG Xu, MENG Jun, CHEN Wen-fu. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates[J]. >Journal of Integrative Agriculture, 2017, 16(03): 713-724.
No Suggested Reading articles found!