Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (3): 790-798    DOI: 10.1016/j.jia.2022.08.119
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China
ZHANG Yu-hong1*, LI Zhi-xin2*, DU Ya-jie1, 3, LI Shi-fang1#, ZHANG Zhi-xiang1#

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, P.R.China

3 College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

【目的】马铃薯纺锤形块茎类病毒属的多种类病毒可侵染番茄,造成严重病害,威胁产业发展。研发番茄类病毒检测技术可为病害防控提供技术支撑。此外,虽然国外有报道说我国出口的番茄种子上携带类病毒,但仍未有定论,尚需确认,并且有必要弄清楚我国番茄上类病毒的发生情况。【方法】 使用序列比对的方法,比较能够侵染番茄的不同类病毒的基因组序列,找到保守序列,以此为模板,通过体外转录的方法制备RNA探针。通过斑点杂交的方法,测试该探针的检测灵敏度和特异性。另外,利用该通用探针,使用斑点杂交的方法,普查我国番茄上的类病毒发生情况。【结果】能够侵染番茄的6种类病毒:金鱼花潜隐类病毒(CLVd)、辣椒小果类病毒(PCFVd)、马铃薯纺锤块茎类病毒(PSTVd)、番茄顶缩类病毒(TASVd)、番茄褪绿矮缩类病毒(TCDVd)和番茄雄性株类病毒(TPMVd)的基因组序列含有一段长度为61 bp的保守序列。利用该序列制备的RNA探针能够同时检测这6种类病毒,其杂交检测的适宜反应温度为55℃~60℃。虽然该探针的检测灵敏度略低于每种类病毒的特异性探针,但可以满足田间大量样品的快速检测的需求。利用该探针,从我国番茄温室栽培的番茄植株上检测到了PSTVd,这是PSTVd在我国番茄上的首次报道。基因组序列比较分析发现,我国PSTVd番茄分离物的序列与国外茄科作物上PSTVd的序列最为接近,并且感染PSTVd的番茄的种子是从国外进口的。这表明我国番茄上的PSTVd应该通过进口的番茄种子从国外传入的。【结论】研发出了一种能够同时检测侵染番茄的6种类病毒的通用探针,该探针具有快速灵敏的特点,适用于大量样品的快速检测,为番茄类病毒的监测及防控提供了技术支撑;此外,证实我国温室栽培的番茄上的确有PSTVd的发生,应该是通过种子由国外传入的,因此,需要加强进口种子及繁殖材料的检验和检疫,也要加强田间种植番茄的监测。


Several viroids in the genus Pospiviroid can infect tomato (Solanum lycopersicum) and cause severe diseases, posing a serious threat to tomato production.  For simultaneous detection of six tomato-infecting pospiviroids - columnea latent viroid (CLVd), pepper chat fruit viroid (PCFVd), potato spindle tuber viroid (PSTVd), tomato apical stunt viroid (TASVd), tomato chlorotic dwarf viroid (TCDVd), and tomato planta macho viroid (TPMVd), we developed a universal probe based on a highly conserved 61 nt long sequence shared among them.  Compared with their specific probes, the universal probe has a similar, though slightly reduced, detection sensitivity and has the advantages of simple and cost-effective preparation and simultaneous detection of the six pospiviroids.  In addition, the universal probe was used in dot-blot hybridization assays for a large-scale survey of viroid(s) in tomato plantings in China.  Only PSTVd was detected in a few greenhouse-planted tomato plants.  Sequence analysis revealed that these tomato PSTVd isolates may have been introduced from tomato seeds imported from abroad. 

Keywords:  tomato       viroid        simultaneous detection        molecular hybridization        pospiviroids  
Received: 18 January 2022   Accepted: 01 June 2022
Fund: This research was funded by the National Natural Science Foundation of China (31670149).
About author:  ZHANG Yu-hong, E-mail:; #Correspondence LI Shi-fang, Tel: +86-10-62890875, E-mail:; ZHANG Zhi-xiang, Tel: +86-10-62815615, E-mail: * These authors contributed equally to this study.

Cite this article: 

ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang. 2023. A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China. Journal of Integrative Agriculture, 22(3): 790-798.

Batuman O, Ciftci O C, Osei M K, Miller S A, Rojas M R, Gilbertson R L. 2019. Rasta disease of tomato in Ghana is caused by the pospiviroids potato spindle tuber viroid and tomato apical stunt viroid. Plant Disease, 103, 1525–1535.
Bostan H, Gazel M, Elibuyuk I O, Caglayan K. 2010. Occurrence of Pospiviroid in potato, tomato and some ornamental plants in Turkey. African Journal of Biotechnology, 9, 2613–2617.
Botermans M, Roenhorst J W, Hooftman M, Verhoeven J T J, Metz E, van Veen E J, Geraats B P J, Kemper M, Beugelsdijk D C M, Koenraadt H, Jodlowska A, Westenberg M. 2020. Development and validation of a real-time RT-PCR test for screening pepper and tomato seed lots for the presence of pospiviroids. PLoS ONE, 15, e0232502.
Botermans M, van de Vossenberg B T L H, Verhoeven J T J, Roenhorst J W, Hooftman M, Dekter R, Meekes E T M. 2013. Development and validation of a real-time RT-PCR assay for generic detection of pospiviroids. Journal of Virological Methods, 187, 43–50.
van Brunschot S L, Bergervoet J H W, Pagendam D E, de Weerdt M, Geering A D W, Drenth A, van der Vlugt R A A. 2014a. Development of a multiplexed bead-based suspension array for the detection and discrimination of Pospiviroid plant pathogens. PLoS ONE, 9, e84743.
van Brunschot S L, Verhoeven J T J, Persley D M, Geering A D W, Drenth A, Thomas J E. 2014b. An outbreak of potato spindle tuber viroid in tomato is linked to imported seed. European Journal of Plant Pathology, 139, 1–7.
Choi H, Jo Y, Cho W K, Yu J, Tran P T, Salaipeth L, Kwak H R, Choi H S, Kim K H. 2020. Identification of viruses and viroids infecting tomato and pepper plants in Vietnam by metatranscriptomics. International Journal of Molecular Sciences, 21.
Cohen O, Batuman O, Stanbekova G, Sano T, Mawassi M, Bar-Joseph M. 2006. Construction of a multiprobe for the simultaneous detection of viroids infecting citrus trees. Virus Genes, 33, 287–292.
Dall D, Penrose L, Daly A, Constable F, Gibbs M. 2019. Prevalences of Pospiviroid contamination in large seed lots of tomato and Capsicum, and related seed testing considerations. Viruses, 11, 1034.
Elliott D R, Alexander B J R, Smales T E, Tang Z, Clover G R G. 2001. First report of potato spindle tuber viroid in tomato in New Zealand. Plant Disease, 85, 1027.
EPPO (European and Mediterranean Plant Protection Organization). 2021. PM 7/138 (1) Pospiviroids (genus Pospiviroid). EPPO Bulletin, 51, 144–177.
Faggioli F, Luigi M, Sveikauskas V, Olivier T, Marn M V, Plesko I M, De Jonghe K, Van Bogaert N, Grausgruber-Groger S. 2015. An assessment of the transmission rate of four Pospiviroid species through tomato seeds. European Journal of Plant Pathology, 143, 613–617.
Gucek T, Trdan S, Jakse J, Javornik B, Matousek J, Radisek S. 2017. Diagnostic techniques for viroids. Plant Pathology, 66, 339–358.
Hailstones D L, Tesoriero L A, Terras M A, Dephoff C. 2003. Detection and eradication of potato spindle tuber viroid in tomatoes in commercial production in New South Wales, Australia. Australasian Plant Pathology, 32, 317–318.
Jiang D M, Hou W Y, Sano T, Kang N, Qin L, Wu Z J, Li S F, Xie L H. 2013. Rapid detection and identification of viroids in the genus Coleviroid using a universal probe. Journal of Virological Methods, 187, 321–326.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
Lin L M, Li R H, Mock R, Kinard G. 2011. Development of a polyprobe to detect six viroids of pome and stone fruit trees. Journal of Virological Methods, 171, 91–97.
Ling K S, Sfetcu D. 2010. First report of natural infection of greenhouse tomatoes by potato spindle tuber viroid in the United States. Plant Disease, 94, 1376.
Luigi M, Costantini E, Luison D, Mangiaracina P, Tomassoli L, Faggioli F. 2014. A diagnostic method for the simultaneous detection and identification of pospiviroids. Journal of Plant Pathology, 96, 151–158.
Matsushita Y, Tsuda S. 2016. Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 145, 1007–1011.
Matsushita Y, Usugi T, Tsuda S. 2010. Development of a multiplex RT-PCR detection and identification system for potato spindle tuber viroid and tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 128, 165–170.
Mumford R A, Jarvis B, Skelton A. 2004. The first report of potato spindle tuber viroid (PSTVd) in commercial tomatoes in the UK. Plant Pathology, 53, 242–242.
Natarajamurthy S, Bhat S K S, Ramanayaka J G. 2021. Occurrence of natural infection of tomato by potato spindle tuber viroid (PSTVd) in India. Australasian Plant Disease Notes, 16, 20.
Olivier T, Demonty E, Fauche F, Steyer S. 2014. Generic detection and identification of pospiviroids. Archives of Virology, 159, 2097–2102.
Pallas V, Sanchez-Navarro J A, James D. 2018. Recent advances on the multiplex molecular detection of plant viruses and viroids. Frontiers in Microbiology, 9, 2087.
Pallas V, Sanchez-Navarro J A, Kinard G R, Di Serio F. 2017. Chapter 35: Molecular hybridization techniques for detecting and studying viroids. In: Flores R, Randles J W, Palukaitis P, eds., Viroids and Satellites. Academic Press, Boston. pp. 369–379.
Peiro A, Pallas V, Sanchez-Navarro J A. 2012. Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132, 469–475.
Qiu C L, Zhang Z X, Li S F, Bai Y J, Liu S W, Fan G Q, Gao Y L, Zhang W, Zhang S, Lu W H, Lu D Q. 2016. Occurrence and molecular characterization of potato spindle tuber viroid (PSTVd) isolates from potato plants in North China. Journal of Integrative Agriculture, 15, 349–363.
Sanchez-Navarro J A, Corachan L, Font I, Alfaro-Fernandez A, Pallas V. 2019. Polyvalent detection of twelve viruses and four viroids affecting tomato by using a unique polyprobe. European Journal of Plant Pathology, 155, 361–368.
Di Serio F. 2007. Identification and characterization of potato spindle tuber viroid infecting Solanum jasminoides and S. rantonnetii in Italy. Journal of Plant Pathology, 89, 297–300.
Di Serio F, Owens R A, Li S F, Matousek J, Pallas V, Randles J W, Sano T, Verhoeven J T J, Vidalakis G, Flores R. 2021. ICTV virus taxonomy profile: Pospiviroidae. Journal of General Virology, 102, 001543.
Simmons H E, Ruchti T B, Munkvold G P. 2015. Frequencies of seed infection and transmission to seedlings by potato spindle tuber viroid (a pospiviroid) in tomato. Journal of Plant Pathology and Microbiology, 6, 275.
Song J J, Meng J R, Zou C W, Li P, Wang Z Q, Chen B S. 2013. Identification of viruses from potato planted in winter in Guangxi by small RNA deep sequencing. Scientia Agricultura Sinica 46, 4075–4081. (in Chinese)
Torchetti E M, Navarro B, Di Serio F. 2012. A single polyprobe for detecting simultaneously eight pospiviroids infecting ornamentals and vegetables. Journal of Virological Methods, 186, 141–146.
Tseng Y W, Wu C F, Lee C H, Chang C J, Chen Y K, Jan F J. 2021. Universal primers for rapid detection of six pospiviroids in Solanaceae plants using one-step reverse transcription PCR and reverse transcription loop-mediated isothermal amplification. Plant Disease, 105, 2867–2872.
Verhoeven J T J, Botermans M, Schoen R, Koenraadt H, Roenhorst J W. 2021. Possible overestimation of seed transmission in the spread of pospiviroids in commercial pepper and tomato crops based on large-scale grow-out trials and systematic literature review. Plants, 10, 1707.
Verhoeven J T J, Jansen C C C, Roenhorst J W, Steyer S, Michelante D. 2007. First report of Potato spindle tuber viroid in tomato in Belgium. Plant Disease, 91, 1055.
Verhoeven J T J, Jansen C C C, Willemen T M, Kox L F F, Owens R A, Roenhorst J W. 2004. Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.
Yanagisawa H, Shiki Y, Matsushita Y, Ooishi M, Takaue N, Tsuda S. 2017. Development of a comprehensive detection and identification molecular based system for eight pospiviroids. European Journal of Plant Pathology, 149, 11–23.
Zhang Z X, Peng S, Jiang D M, Pan S, Wang H Q, Li S F. 2012. Development of a polyprobe for the simultaneous detection of four grapevine viroids in grapevine plants. European Journal of Plant Pathology, 132, 9–16.
[1] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[2] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[3] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[4] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[5] LIN Hao-wei, WU Zhen, ZHOU Rong, CHEN Bin, ZHONG Zhao-jiang, JIANG Fang-ling.

SlGH9-15 regulates tomato fruit cracking with hormonal and abiotic stress responsiveness cis-elements [J]. >Journal of Integrative Agriculture, 2023, 22(2): 447-463.

[6] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[7] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
[8] TANG Qiong, ZHENG Xiao-dong, GUO Jun, YU Ting. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways[J]. >Journal of Integrative Agriculture, 2022, 21(3): 697-709.
[9] CHEN Yan-hui, XIE Bin, AN Xiu-hong, MA Ren-peng, ZHAO De-ying, CHENG Cun-gang, LI En-mao, ZHOU Jiang-tao, KANG Guo-dong, ZHANG Yan-zhen. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3578-3588.
[10] DUAN Yao-ke, HAN Rong, SU Yan, WANG Ai-ying, LI Shuang, SUN Hao, GONG Hai-jun. Transcriptional search to identify and assess reference genes for expression analysis in Solanum lycopersicum under stress and hormone treatment conditions[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3216-3229.
[11] Hakan FIDAN, Pelin SARIKAYA, Kubra YILDIZ, Bengi TOPKAYA, Gozde ERKIS, Ozer CALIS. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2170-2179.
[12] YAN Zhi-yong, ZHAO Mei-sheng, MA Hua-yu, LIU Ling-zhi, YANG Guang-ling, GENG Chao, TIAN Yan-ping, LI Xiang-dong. Biological and molecular characterization of tomato brown rugose fruit virus and development of quadruplex RT-PCR detection[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1871-1879.
[13] WU Li-hong, ZHOU Cao, LONG Gui-yun, YANG Xi-bin, WEI Zhi-yan, LIAO Ying-jiang, YANG Hong, HU Chao-xing . Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables[J]. >Journal of Integrative Agriculture, 2021, 20(3): 755-763.
[14] ZHANG Gui-fen, MA De-ying, WANG Yu-sheng, GAO You-hua, LIU Wan-xue, ZHANG Rong, FU Wen-jun, XIAN Xiao-qing, WANG Jun, KUANG Meng, WAN Fang-hao. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1912-1917.
[15] HUANG Hui-ying, LI Huan, XIANG Dan, LIU Qing, LI Fei, LIANG Bin. Translocation and recovery of 15N-labeled N derived from the foliar uptake of 15NH3 by the greenhouse tomato (Lycopersicon esculentum Mill.)[J]. >Journal of Integrative Agriculture, 2020, 19(3): 859-865.
No Suggested Reading articles found!