Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 536-545    DOI: 10.1016/j.jia.2024.11.022
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The CONSTANS-LIKE SlCOL1 in tomato regulates the fruit chlorophyll content by stabilizing the GOLDEN2-LIKE protein

Long Cui1, 2, Fangyan Zheng1, 2, Chenhui Zhang2, Sunan Gao2, Jie Ye2, Yuyang Zhang2, Taotao Wang2, Zonglie Hong3, Zhibiao Ye2, Junhong Zhang2#

1 Ganzhou Key Laboratory of Greenhouse Vegetables, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China

2 National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China

3 Department of Plant Sciences, University of Idaho, Moscow, Idaho 83844, USA

 Highlights 
SlCOL1 plays key roles in controlling fruit chlorophyll.
SlCOL1 forms a complex with GOLDEN2-LIKE (GLK2) and promotes the stability of GLK2 protein.
GLK2 is required for the function of SlCOL1 in regulating chlorophyll content.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

CONSTANSCO和CONSTANS-LIKECOL转录因子可以调节植物从营养生长到成花转变等一系列过程。然而,这些转录因子在调节果实叶绿素含量方面的研究相对较少。在本研究中,发现拟南芥CONSTANSCO的番茄直系同源基因SlCOL1在控制番茄果实叶绿素含量方面发挥着关键作用。抑制SlCOL1基因表达,番茄未成熟绿色果实中叶绿素含量显著降低。相反,过量表达SlCOL1基因,导致番茄未成熟绿色果实中叶绿素的含量显著升高。蛋白互作结果表明,SlCOL1GOLDEN2-LIKEGLK2)可以直接互作并形成复合物,促进GLK2蛋白的稳定性。在番茄glk2突变体中过量表达SlCOL1并不能改变未成熟绿色果实中的叶绿素的含量,这一结果表明,SlCOL1调节叶绿素含量的重要功能需要GLK2蛋白的存在。综上所述,这些结果为COL1GLK2调节番茄果实发育和叶绿素积累的机制提供了新的见解。



Abstract  
CONSTANS (CO) and CONSTANS-LIKE (COL) transcription factors are known to regulate a series of cellular processes, including the transition from vegetative growth to flower development in plants.  However, their role in regulating the fruit chlorophyll content is poorly understood.  In this study, SlCOL1, the tomato (Solanum lycopersicum) ortholog of Arabidopsis CONSTANS, was shown to play key roles in controlling fruit chlorophyll.  The suppression of SlCOL1 expression led to a reduction in the chlorophyll content of immature green fruit, while the overexpression of SlCOL1 increased it.  An analysis of protein–protein interactions indicated that SlCOL1 forms a complex with GOLDEN2-LIKE (GLK2), which promotes the stability of its protein.  The overexpression of SlCOL1 in the glk2 null mutation background of tomato failed to promote chlorophyll accumulation in the immature green fruit, which suggests that GLK2 is required for the function of SlCOL1 in regulating chlorophyll content.  These results shed new light on the mechanisms used by COL1 and GLK2 to regulate fruit development and chlorophyll accumulation in tomato.


Keywords:  chlorophyll       COL1        GLK2        BBX24        tomato  
Received: 10 November 2023   Accepted: 28 May 2024
Fund: 

This work was supported by grants from the National Natural Science Foundation of China (32360766, 32072595 and 32202512) and the Earmarked Fund for CARS (CARS-23-A13). 

About author:  #Correspondence Junhong Zhang, Tel: +86-27-87059813, Fax: +86-27-87282010, E-mail: zhangjunhng@mail.hzau.edu.cn

Cite this article: 

Long Cui, Fangyan Zheng, Chenhui Zhang, Sunan Gao, Jie Ye, Yuyang Zhang, Taotao Wang, Zonglie Hong, Zhibiao Ye, Junhong Zhang. 2025. The CONSTANS-LIKE SlCOL1 in tomato regulates the fruit chlorophyll content by stabilizing the GOLDEN2-LIKE protein. Journal of Integrative Agriculture, 24(2): 536-545.

Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. 2006. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal46, 462–476.

Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin M J, Benvenuto G, Bowler C, Genschik P, Hellmann H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thalianaThe Plant Journal47, 591–603.

Chen H D, Shen Y P, Tang X B, Yu L, Wang J, Guo L, Zhang Y, Zhang H Y, Feng S H, Strickland E, Zheng N, Deng X W. 2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. The Plant Cell18, 1991–2004.

Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B. 2016. Genomic organization, phylogenetic and expression analysis of the B-BOX gene family in tomato. Frontiers in Plant Science7, 1552.

Cookson P, Kiano J, Shipton C, Fraser P, Romer S, Schuch W, Bramley P, Pyke K. 2003. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta217, 896–903.

Cui L, Zheng F Y, Wang J F, Zhang C L, Zhang D D, Gao S N, Zhang C H, Ye J, Zhang Y Y, Ouyang B, Wang T T, Hong Z L, Ye Z B, Zhang J H. 2022. The tomato CONSTANS-LIKE protein SlCOL1 regulates fruit yield by repressing SFT gene expression. BMC Plant Biology22, 429.

Davuluri G R, Van Tuinen A, Fraser P D, Manfredonia A, Newman R, Burgess D, Brummell D A, King S R, Palys J, Uhlig J. 2005. Fruit-specific RNAi mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology23, 890–895.

Enfissi E M, Barneche F, Ahmed I, Lichtle C, Gerrish C, McQuinn R P, Giovannoni J J, Lopez-Juez E, Bowler C, Bramley P M, Fraser, P D. 2010. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. The Plant Cell22, 1190–1215.

Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal53, 717–730.

Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy M E, Ellis N, Beltran J P, Rameau C, Weller J L. 2005. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology137, 1420–1434.

Jones B, Frasse P, Olmos E, Zegzouti H, Li Z G, Latche A, Pech J C, Bouzayen M. 2002. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal32, 603–613.

Khanna R, Kronmiller B, Maszle D R, Coupland G, Holm M, Mizuno T, Wu S H. 2009. The Arabidopsis B-box zinc finger family. The Plant Cell21, 3416–3420.

Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo H, Chen L, Levin I. 2007. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiology145, 389–401.

Lichtenthaler H K, Wellburn A R. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions11, 591–592.

Li Y, Deng H, Miao M, Li H, Huang S, Wang S, Liu Y. 2016. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes. New Phytologist210, 208–226.

Liu L J, Zhang Y C, Li Q H, Sang Y, Mao J, Lian H L, Wang L, Yang H Q. 2008. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. The Plant Cell20, 292–306.

Liu Y S, Roof S, Ye Z B, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America101, 9897–9902.

Mustilli A C, Fenzi F, Ciliento R, Alfano F, Bowler C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1The Plant Cell11, 145–157.

Nadakuduti S S, Holdsworth W L, Klein C L, Barry C S. 2014. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. The Plant Journal78, 1022–1033.

Nguyen C V, Vrebalov J T, Gapper N E, Zheng Y, Zhong S, Fei Z, Giovannoni J J. 2014. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. The Plant Cell26, 585–601.

Powell A L, Nguyen C V, Hill T, Cheng K L, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Munoz R, Vicente A, Lopez-Baltazar J, Barry C S, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni J J, Bennett A B. 2012. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science336, 1711–1715.

Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell80, 847–857.

Qi H, Xia F N, Xie L J, Yu L J, Chen Q F, Zhuang X H, Wang Q, Li F, Jiang L, Xie Q, Xiao S. 2017. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. The Plant Cell29, 890–911.

Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, Arvidsson S, van der Merwe M J, Riaño-Pachón D M, Mueller-Roeber B, Fei Z, Nesi A N, Giovannoni J J, Fernie A R. 2011. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal68, 999–1013.

Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science288, 1613–1616.

Stevens R, Buret M, Garchery C, Carretero Y, Causse M. 2006. Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. Journal of Agricultural and Food Chemistry54, 6159–6165.

Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature410, 1116–1120.

Tang X, Miao M, Niu X, Zhang D, Cao X, Jin X, Zhu Y, Fan Y, Wang H, Liu Y, Sui Y, Wang W, Wang A, Xiao F, Giovannoni J, Liu Y. 2016. Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato. New Phytologist209, 1028–1039.

Tieman D, Zhu G, Resende Jr M F, Lin T, Nguyen C, Bies D, Rambla J L, Beltran K S, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H. 2017. A chemical genetic roadmap to improved tomato flavor. Science355, 391–394.

Wang C Q, Guthrie C, Sarmast M K, Dehesh K. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. The Plant Cell26, 3589–3602.

Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y. 2008. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. The Plant Journal55, 89–103.

Waters M T, Moylan E C, Langdale J A. 2008. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal56, 432–444.

Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell21, 1109–1128.

Xiong C, Luo D, Lin A, Zhang C, Shan L, He P, Li B, Zhang Q, Hua B, Yuan Z, Li H, Zhang J, Yang C, Lu Y, Ye Z, Wang T. 2018. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist221, 279–294.

[1] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[2] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[3] TANG Chan-juan, LUO Ming-zhao, ZHANG Shuo, JIA Guan-qing, TANG Sha, JIA Yan-chao, ZHI Hui, DIAO Xian-min. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1618-1630.
[4] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[5] LI Si-ping, ZENG Lu-sheng, SU Zhong-liang. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1927-1940.
[6] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[7] WU Han-yu, QIAO Mei-yu, ZHANG Wang-feng, WANG Ke-ru, LI Shao-kun, JIANG Chuang-dao. Systemic regulation of photosynthetic function in maize plants at graining stage under vertically heterogeneous light environment[J]. >Journal of Integrative Agriculture, 2022, 21(3): 666-676.
[8] ZHAO Yu, WANG Jian-wen, CHEN Li-ping, FU Yuan-yuan, ZHU Hong-chun, FENG Hai-kuan, XU Xin-gang, LI Zhen-hai. An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2535-2551.
[9] CHEN Li-li, WANG Hao-ying, GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao. Transcriptome analysis reveals effects of red and blue lightemitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2914-2931.
[10] ZENG Zhao-qiong, LIN Tian-zi, ZHAO Jie-yu, ZHENG Tian-hui, XU Le-feng, WANG Yi-hua, LIU Ling-long, JIANG Ling, CHEN Sai-hua, WAN Jian-min . OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa)[J]. >Journal of Integrative Agriculture, 2020, 19(3): 612-623.
[11] Azam BORZOUEI, Mir Ahmad MOUSAVI SHALMANI, Ali ESKANDARI . Effects of salt and nitrogen on physiological indices and carbon isotope discrimination of wheat cultivars in the northeast of Iran[J]. >Journal of Integrative Agriculture, 2020, 19(3): 656-667.
[12] DU Zhi-xuan, HAO Hui-ying, HE Jin-peng, WANG Jian-ping, HUANG Zhou, XU Jie, FU Hai-hui, FU Jun-ru, HE Hao-hua. GraS is critical for chloroplast development and affects yield in rice [J]. >Journal of Integrative Agriculture, 2020, 19(11): 2603-2615.
[13] CUI Bei, ZHAO Qian-jun, HUANG Wen-jiang, SONG Xiao-yu, YE Hui-chun, ZHOU Xian-feng. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1230-1245.
[14] WU Ya-wei, LI Qiang, JIN Rong, CHEN Wei, LIU Xiao-lin, KONG Fan-lei, KE Yong-pei, SHI Hai-chun, YUAN Ji-chao. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different lownitrogen tolerances[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1246-1256.
[15] Hafiz Ghulam Muhu-Din Ahmed, Abdus Salam khan, LI Ming-ju, Sultan Habibullah Khan, Muhammad Kashif . Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2483-2491.
No Suggested Reading articles found!