Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1769-1785    DOI: 10.1016/j.jia.2024.09.037
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
DNA demethylation is involved in nitric oxide-induced flowering in tomato

Xuemei Hou1, Meimei Shi1, Zhuohui Zhang1, Yandong Yao1, Yihua Li2, Changxia Li3, Wenjin Yu3, Chunlei Wang1, Weibiao Liao1#

1 College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China

2 College of Agriculture and Ecological Engineering, Hexi University, Zhangye 734000, China

3 Department of Horticulture, College of Agriculture, Guangxi University, Nanning 530004, China

 Highlights 
Nitric oxide and DNA demethylation positively regulate tomato flowering.
DNA demethylation play an important role in NO-induced tomato flowering.
NO promotes tomato flowering by mediating the DNA demethylation of flowering induction genes.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

开花期是决定果实成熟和种子传播时机的最重要物候期之一。迄今为止,已有研究表明一氧化氮(NO)和DNA去甲基化对植物开花具有调节作用。然而,没有直接的实验证据表明NO与DNA去甲基化在植物开花调控中相互作用促进开花。本研究采用NO供体和DNA甲基化抑制剂来探讨DNA去甲基化对NO介导的番茄开花的影响。结果表明,NO对番茄开花的促进作用呈剂量依赖效应,其中10 μmol L-1 S-亚硝基谷胱甘肽(GSNO,NO供体)的促进作用最为显著。用50μmol L-1 DNA甲基化抑制剂5-氮杂胞苷(5-AzaC)处理也显著促进番茄开花。此外,GSNO和5-AzaC提高了过氧化物酶(POD)和过氧化氢酶(CAT)活性,增加了细胞分裂素(CTK)和脯氨酸含量,降低了赤霉素(GA3)和吲哚-3-乙酸(IAA)含量。GSNO与5-AzaC共处理增强了GSNO或5-AzaC对番茄开花的积极作用。同时,与GSNO或5-AzaC单独处理相比,GSNO+5-AzaC共处理显著提高了番茄各组织中整体DNA去甲基化水平。结果还表明,DNA去甲基化可能参与了NO诱导的开花过程。GSNO+5-AzaC处理显著改变了花诱导基因和花抑制基因的表达。其中,ARGONAUTE 4 (AGO4A)、SlSP3D/SINGLE FLOWER TRUSS (SFT)、MutS HOMOLOG 1 (MSH1)、锌指蛋白2 (ZFP2)和开花位点D (FLD) 5个花诱导基因被作为候选基因进一步研究。McrBC-PCR分析表明,顶端SFT基因和茎部FLD基因的DNA去甲基化可能参与了NO诱导的开花过程。因此,我们的研究表明,NO可能通过介导开花诱导基因的DNA去甲基化来促进番茄开花。本研究揭示了NO和DNA去甲基化在促进番茄开花中的协同作用。



Abstract  


Flowering is one of the most important phenological periods, as it determines the timing of fruit maturation and seed dispersal.  To date, both nitric oxide (NO) and DNA demethylation have been reported to regulate flowering in plants.  However, there is no compelling experimental evidence for a relationship between NO and DNA demethylation during plant flowering.  In this study, an NO donor and a DNA methylation inhibitor were used to investigate the involvement of DNA demethylation in NO-mediated tomato (Solanum lycopersicum cv. Micro-Tom) flowering.  The results showed that the promoting effect of NO on tomato flowering was dose-dependent, with the greatest positive effect observed at 10 μmol L–1 of the NO donor S-nitrosoglutathione (GSNO).  Treatment with 50 μmol L–1 of the DNA methylation inhibitor 5-azacitidine (5-AzaC) also significantly promoted tomato flowering.  Moreover, GSNO and 5-AzaC increased the peroxidase (POD) and catalase (CAT) activities and cytokinin (CTK) and proline contents, while they reduced the gibberellic acid (GA3) and indole-3-acetic acid (IAA) contents.  Co-treatment with GSNO and 5-AzaC accelerated the positive effects of GSNO and 5-AzaC in promoting tomato flowering.  Meanwhile, compared with a GSNO or 5-AzaC treatment alone, co-treatment with GSNO+5-AzaC significantly increased the global DNA demethylation levels in different tissues of tomato.  The results also indicate that DNA demethylation may be involved in NO-induced flowering.  The expression of flowering genes was significantly altered by the GSNO+5-AzaC treatment.  Five of these flowering induction genes, ARGONAUTE 4 (AGO4A), SlSP3D/SINGLE FLOWER TRUSS (SFT), MutS HOMOLOG 1 (MSH1), ZINC FINGER PROTEIN 2 (ZFP2), and FLOWERING LOCUS D (FLD), were selected as candidate genes for further study.  An McrBC-PCR analysis showed that DNA demethylation of the SFT gene in the apex and the FLD gene in the stem might be involved in NO-induced flowering.  Therefore, this study shows that NO might promote tomato flowering by mediating the DNA demethylation of flowering induction genes, and it provides direct evidence for a synergistic effect of NO and DNA demethylation in promoting tomato flowering.


Keywords:  S-nitrosoglutathione        5-azacitidine       flowering induction genes       tomato flowering  
Received: 28 December 2023   Online: 30 September 2024   Accepted: 07 May 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32360743, 32072559, and 31860568); the National Key Research and Development Program, China (2018YFD1000800); and the Fostering Foundation for the Excellent Ph D Dissertation of Gansu Agricultural University, China (YB2022004).  
About author:  #Corresponence Weibiao Liao, Tel: +86-931-7632399, Fax: +86-931-7631145, E-mail: liaowb@gsau.edu.cn

Cite this article: 

Xuemei Hou, Meimei Shi, Zhuohui Zhang, Yandong Yao, Yihua Li, Changxia Li, Wenjin Yu, Chunlei Wang, Weibiao Liao. 2025. DNA demethylation is involved in nitric oxide-induced flowering in tomato. Journal of Integrative Agriculture, 24(5): 1769-1785.

Ahmad J N, Renaudin J, Eveillard S. 2014. Expression of defence genes in Stolbur phytoplasma infected tomatoes, and effect of defence stimulators on disease development. European Journal of Plant Pathology139, 39–51.

Borovsky Y, Mohan V, Shabtai S, Paran I. 2020. CaFT-LIKE is a flowering promoter in pepper and functions as florigen in tomato. Plant Science301, 110678.

Brown J C L, De Decker M M, Fieldes M A. 2008. A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control. Plant Science175, 217–225.

Cheng Y H, Peng X Y, Yu Y C, Sun Z Y, Han L. 2019. The effects of DNA methylation inhibition on flower development in the dioecious plant Salix viminalisForests10, 173.

Chong L, Xu R, Huang P, Guo P, Zhu M, Du H, Sun X, Ku L, Zhu J K, Zhu Y. 2022. The tomato OST1-VOZ1 module regulates drought-mediated flowering. The Plant Cell34, 2001–2018.

Fan H, Li T, Guan L, Li Z, Guo N, Cai Y, Lin Y. 2012. Effects of exogenous nitric oxide on antioxidation and DNA methylation of Dendrobium huoshanense grown under drought stress. Plant CellTissue and Organ Culture (PCTOC), 109, 307–314.

Gupta K J, Kolbert Z, Durner J, Lindermayr C, Corpas F J, Brouquisse R, Barroso J B, Umbreen S, Palma J M, Hancock J T, Petrivalsky M, Wendehenne D, Loake G J. 2020. Regulating the regulator: Nitric oxide control of post-translational modifications. New Phytologist227, 1319–1325.

Hajihashemi S, Jahantigh O. 2023. Nitric oxide effect on growth, physiological and biochemical processes, flowering, and postharvest performance of Narcissus tazzetaJournal of Plant Growth Regulation42, 892–907.

Han Y, Zhang C, Yang H, Jiao Y. 2014. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in ArabidopsisProceedings of the National Academy of Sciences of the United States of America111, 6840–6845.

He L, Huang H, Bradai M, Zhao C, You Y, Ma J, Zhao L, Lozano-Durán R, Zhu J K. 2022. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nature Communications13, 1335.

Healey A, Furtado A, Cooper T, Henry R J. 2014. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods10, 1–8.

Huang W, Xian Z, Hu G, Li Z. 2016. SlAGO4A, a core factor of RNA-directed DNA methylation (RdDM) pathway, plays an important role under salt and drought stress in tomato. Molecular Breeding36, 1–13.

Huang X, Zhang Y, Wang L, Dong X, Hu W, Jiang M, Chen G, An G, Xiong F, Wu Y. 2021. OsDOF11 affects nitrogen metabolism by sucrose transport signaling in rice (Oryza sativa L.). Frontiers in Plant Science12, 703034.

Inagaki S, Takahashi M, Takashima K, Oya S, Kakutani T. 2021. Chromatin-based mechanisms to coordinate convergent overlapping transcription. Nature Plants7, 295–302.

Jiang W, Yan X, Lu C, Xu X, Xu E, Chen D, Huang Y, Lv A, Shao Q. 2024. Morphological, physiological and biochemical changes and the effects of polyamines on the regulation of Anoectochilus roxburghii during flowering stage. [2023-11-2]. https://ssrn.com/abstract=4753292

Kenchanmane R, Sunil K. 2017. Utilizing MutS HOMOLOG 1 (MSH1) derived epigenetic variation in breeding for yield and stress adaptability. Ph D thesis, The University of Nebraska–Lincoln, USA.

Khairul-Anuar M A, Mazumdar P, Lum S, Harikrishna J A. 2021. Dendrobium hybrid flower number and pedicel curvature is influenced by the application of gibberellic acid and indole-3-acetic acid. Biology Bulletin48, 740–745.

Larrick J W, Mendelsohn A R. 2019. Regulation of S-nitrosylation in aging and senescence. Rejuvenation Research22, 171–174.

Li W G, Ma Y X, Zheng C K, Li G. 2022. Variations of cytosine methylation patterns between staminate and perfect flowers within andromonoecious Taihangia rupestris (Rosaceae) revealed by methylation-sensitive amplification polymorphism. Journal of Plant Growth Regulation41, 351–363.

Li Z, Tang M, Luo D, Kashif M H, Cao S, Zhang W, Hu Y, Huang Z, Yue J, Li R, Chen P. 2021. Integrated methylome and transcriptome analyses reveal the molecular mechanism by which DNA methylation regulates kenaf flowering. Frontiers in Plant Science12, 709030.

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the United States of America103, 6398–6403.

Liu Y J, Li D, Gong J, Wang Y B, Chen Z B, Pang B S, Chen X C, Gao J G, Yang W B, Zhang F T, Tang Y M, Zhao C P, Gao S Q. 2021. Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genomics22, 911.

Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M. 2009. The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiologia Plantarum137, 72–85.

Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. 2004. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta218, 427–434.

Niedojadło K, Kupiecka M, Kołowerzo-Lubnau A, Lenartowski R, Niedojadło J, Bednarska-Kozakiewicz E. 2020. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. Protoplasma257, 793–805.

Niu L, Yu J, Liao W, Xie J, Yu J, Lv J, Xiao X, Hu L, Wu Y. 2019. Proteomic investigation of S-nitrosylated proteins during NO-induced adventitious rooting of cucumber. International Journal of Molecular Sciences20, 5363.

Okuda K, Nakahara K, Ito A, Iijima Y, Nomura R, Kumar A, Fujikawa K, Adachi K, Shimada Y, Fujio S, Yamamoto R, Takasugi N, Onuma K, Osaki M, Okada F, Ukegawa T, Takeuchi Y, Yasui N, Yamashita A, Marusawa H, et al. 2023. Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis. Nature Communications14, 621.

Qi N, Hou X, Wang C, Li C, Huang D, Li Y, Wang N, Liao W. 2021. Methane-rich water induces bulblet formation of scale cuttings in Lilium davidii var. unicolor by regulating the signal transduction of phytohormones and their levels. Physiologia Plantarum172, 1919–1930.

Rahneshan Z, Nasibi F, Moghadam A A. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions13, 73–82.

Rai K K, Rai N, Rai S P. 2018. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L. plants by regulating bio-physical processes and DNA methylation. Plant Physiology and Biochemistry128, 72–88.

Rasool G, Buchholz G, Yasmin T, Shabbir G, Abbasi N A, Malik S I. 2021. Overexpression of SlGSNOR impairs in vitro shoot proliferation and developmental architecture in tomato but confers enhanced disease resistance. Journal of Plant Physiology261, 153433.

Renau-Morata B, Nebauer S G, García-Carpintero V, Cañizares J, Minguet E G, De los Mozos M, Molina R V. 2021. Flower induction and development in saffron: Timing and hormone signalling pathways. Industrial Crops and Products164, 113370.

Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S. 2018. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide73, 22–38.

Seligman K, Saviani E E, Oliveira H C, Pinto-Maglio C A, Salgado I. 2008. Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant & Cell Physiology49, 1112–1121.

Shamsi S R H A A, Rabert G A, Kurup S S, Alyafei M A M, Jaleel A. 2021. Biochemical changes and antioxidant variations in date palm (Phoenix dactylifera L.) varieties during flower induction and development. Plants (Basel), 10, 2550.

Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. 2000. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the United States of America97, 3753–3758.

Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W. 2023. Role of methylation in vernalization and photoperiod pathway: A potential flowering regulator? Horticulture Research10, uhad174.

Shi M, Wang C, Wang P, Zhang M, Liao W. 2022. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Science324, 111431.

Silva G F F, Silva E M, Correa J P O, Vicente M H, Jiang N, Notini M M, Junior A C, De Jesus F A, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres L E P, Nogueira F T S. 2019. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. The New Phytologist221, 1328–1344.

Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez J M, Lippman Z B. 2017. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics49, 162–168.

Sun K, Xue Y, Prijic Z, Wang S, Markovic T, Tian C, Wang Y, Xue J, Zhang X. 2022. DNA demethylation induces tree peony flowering with a low deformity rate compared to gibberellin by inducing PsFT expression under forcing culture conditions. International Journal of Molecular Sciences23, 6632.

Wang C, Hou X, Qi N, Li C, Luo Y, Hu D, Li Y, Liao W. 2022. An optimized method to obtain high-quality RNA from different tissues in Lilium davidii var. unicolorScientific Reports12, 2825.

Wang H, Liu X, Yang P, Wu R, Wang S, He S, Zhou Q. 2022. Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents. Plant Physiology and Biochemistry185, 336–343.

Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F. 2017. Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor. Plant & Cell Physiology58, 1764–1776.

Wang Y, Zheng P C, Liu P P, Song X W, Guo F, Li Y Y, Ni D J, Jiang C J. 2019. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chemistry272, 313–322.

Weng L, Bai X, Zhao F, Li R, Xiao H. 2016. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2Plant Biotechnology Journal14, 2310–2321.

Weng L, Zhao F, Li R, Xu C, Chen K, and Xiao H. 2015. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology167, 931–949.

Williams B P, Bechen L L, Pohlmann D A, Gehring M. 2022. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. Plant Cell34, 1189–1206.

Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J. 2019. Comparative RNA-sequencing and DNA methylation analyses of apple (Malus domestica Borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation. Plant & Cell Physiology60, 1702–1721.

Xu M, Li X, Xie W, Lin C, Wang Q, Tao Z. 2023. ETHYLENE INSENSITIVE3/EIN3-LIKE1 modulate FLOWERING LOCUS C expression via histone demethylase interaction. Plant Physiology192, 2290–2300.

Yang J, Xu Y, Wang J, Gao S, Huang Y, Hung F Y, Li T, Li Q, Yue L, Wu K, Yang S. 2022. The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in ArabidopsisJournal of Experimental Botany73, 835–847.

Zdunek-Zastocka E, Grabowska A, Branicki T, Michniewska B. 2017. Biochemical characterization of the triticale TsPAP1, a new type of plant prolyl aminopeptidase, and its impact on proline content and flowering time in transgenic Arabidopsis plants. Plant Physiology and Biochemistry116, 18–26.

Zhang H, Lang Z, Zhu J K. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology19, 489–506.

Zhang J, Fang H, Huo J, Huang D, Wang B, Liao, W. 2018. Involvement of calcium and calmodulin in nitric oxide-regulated senescence of cut lily flowers. Frontiers in Plant Science9, 1284.

Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Li Y, Ma J, Han M. 2016. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple (Malus domestica Borkh.). Plant Physiology and Biochemistry107, 178–186.

Zhang Z W, Fu Y F, Zhou Y H, Wang C Q, Lan T, Chen G D, Zeng J, Chen Y E, Yuan M, Yuan S. 2019. Nitrogen and nitric oxide regulate Arabidopsis flowering differently. Plant Science: an International Journal of Experimental Plant Biology284, 177–184.

Zhu P, Lister C, Dean C. 2021. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature599, 657–661.

Zhu Y, Liao W, Niu L, Wang M, Ma Z. 2016. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. BMC Plant Biology16, 146.

No related articles found!
No Suggested Reading articles found!