Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Unlocking Dendrobium officinale‘s drought resistance: Insights from transcriptomic analysis and enhanced drought tolerance in tomato

Lulu Yu1, 2, Muhammad Ahsan Asghar3, Antonios Petridis3, Fei Xu1, 2#

1 Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan 430415, China

2 School of Life Sciences, Yangtze University, Jingzhou 434025, China

3 Department of Food Science, Aarhus University, Aarhus, 8210, Denmark

 Highlights 

D. officinale survived six months of water deficit and rapidly resumed growth within two days after rehydration.

l Drought tolerance in D. officinale involves stress responses, photosynthesis, phytohormone signaling, and metabolism, aiding future crop breeding.

l Tomato plants overexpressing D. officinale genes POD4 and NAC37 exhibited enhanced drought tolerance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

铁皮石斛是一种兰科植物,耐干旱的能力强。铁皮石斛表现出的高耐旱性可以归因于其结构和成分特征,包括富含多糖和其他胶体物质的厚叶和茎。尽管如此,其有助于提高铁皮石斛耐旱性的分子机制仍然未知。在本研究中,我们限制铁皮石斛的水分一到六个月,并进行生理和RNA-Seq分析,以确定它如何应对长期缺水以及哪些基因可以保护它抵御干旱。研究发现,缺水六个月后,铁皮石斛仍然具有活力,这可以从它仅补水两天后就快速生长中看出。对经过一个月脱水处理的铁皮石斛植株进行转录组分析发现,参与诸多过程的基因表达发生了变化,其中最突出的是应激反应、光合作用、植物激素信号传导和碳代谢和果糖/甘露糖途径等。在这些差异表达基因中,过氧化物酶4(POD4)和NAC37被显著上调,因此我们选择这两个基因来进一步研究增强植物耐旱性的作用。值得注意的是,过表达铁皮石斛POD4和NAC37基因的转基因番茄植株比对照植株更耐旱,表现为活力更强、结实率更高,并维持更高的呼吸速率和叶绿素水平,以及较低氧化损伤等。总体而言,我们的研究探索了利用尚未充分挖掘的物种资源来筛选可能赋予作物耐旱性的基因,并确定了铁皮石斛POD4和NAC37通过生物育种技术提高耐旱性的巨大潜能。



Abstract  

Dendrobium officinale is an orchid herb known for its ability to withstand long periods of drought. The high drought tolerance exhibited by D. officinale can be attributed to its structural and compositional characteristics, including thick leaves and stems rich in polysaccharides and other colloidal substances. However, in spite of these adaptations, the molecular mechanisms contributing to increased drought tolerance remain largely unknown. In this study, we restricted water from D. officinale for one to six months, and performed physiological and RNA sequencing analyses to determine how it responds to long-term dehydration and which genes may protect it against drought. After six months of dehydration D. officinale was still viable as evidenced by its rapid growth after just two days of rehydration. Transcriptome analysis on D. officinale plants subjected to one-month dehydration revealed changes in the expression of genes involved in various processes with the most prominent being stress responses, photosynthesis, phytohormone signaling, carbon metabolism, and fructose/mannose pathways. Among those genes, PEROXIDASE 4 (POD4) and NAC37 were highly upregulated and were selected to examine further their roles in protecting plants against drought. Transgenic tomato plants overexpressing D. officinale’s POD4 and NAC37 genes proved to be more tolerant to drought than control plants, as they were more vigorous, bore more fruits, maintained higher respiration rates and chlorophyll levels, and experienced less oxidative damage. Overall, our work highlights the potential of exploiting underutilized species for selecting genes that confer drought tolerance to crops and identifies POD4 and NAC37 as promising genes for improving drought tolerance via breeding.

Keywords:  Dendrobium officinale       drought stress       drought tolerance       tomato       transcriptomics  
Online: 02 June 2025  
Fund: 

This work was supported by the Hubei Provincial Natural Science Foundation of China (2022CFB009) and the National Natural Science Foundation of China (31900242).

About author:  #Correspondence Fei Xu, E-mail: feixu666@hotmail.com

Cite this article: 

Lulu Yu, Muhammad Ahsan Asghar, Antonios Petridis, Fei Xu. 2025. Unlocking Dendrobium officinale‘s drought resistance: Insights from transcriptomic analysis and enhanced drought tolerance in tomato. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.001

Ahmad I Z. 2019. Chapter 13 - Role of sugars in abiotic stress signaling in plants. In: Khan M I R, Reddy P S, Ferrante A, Khan N A, eds. Plant Signaling Molecules. Woodhead Publishing, pp. 207-217.

Alshareef N O, Wang J Y, Ali S, Al-Babili S, Tester M, Schmöckel S M. 2019. Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiology and Biochemistry, 140, 113-121.

Aluko O O, Ninkuu V, Ziemah J, Jianpei Y, Taiwo E, Ninkuu S B, Sabuli N, Adetunde L A, Imoro A-W M, Ozavize S F, Onyiro Q A, Dogee G, Adedire O M, Hunpatin O S, Opoku N. 2024. Genome-wide identification and expression analysis of EIN3/EIL gene family in rice (Oryza sativa). Plant Stress, 12, 100437.

Chen H, Bullock D A, Alonso J M, Stepanova A N. 2021. To fight or to grow: The balancing role of ethylene in plant abiotic stress responses. Plants, 11, 33.

Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61, 651-679.

Guo F, Han A, Gao H, Liang J, Zhao K, Cao S, Wang H, Wei Y, Shao X, Xu F. 2022. Mannose alleviates yellowing process of broccoli florets by regulating chlorophyll catabolism and delaying programmed cell death. Scientia Horticulturae, 295, 110888.

Huang H, Jiao Y, Tong Y, Wang Y. 2023. Comparative analysis of drought-responsive biochemical and transcriptomic mechanisms in two Dendrobium officinale genotypes. Industrial Crops and Products, 199, 116766.

Huang W, Duan W, Chen Y. 2022. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply. Journal of Hydrology, 614, 128546.

Jian W, Zheng Y, Yu T, Cao H, Chen Y, Cui Q, Xu C, Li Z. 2021. SlNAC6, a NAC transcription factor, is involved in drought stress response and reproductive process in tomato. Journal of Plant Physiology, 264, 153483.

Jyoti S D, Azim J B, Robin A H K. 2021. Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea mays. Plant Gene, 25, 100270.

Lai C H, Huo C Y, Xu J, Han Q B, Li L F. 2024. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. International Journal of Biological Macromolecules, 263, 130315.

Li Q, Xu F, Chen Z, Teng Z, Sun K, Li X, Yu J, Zhang G, Liang Y, Huang X, Du L, Qian Y, Wang Y, Chu C, Tang J. 2021. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants, 7, 1108-1118.

Li X D, Zhuang K Y, Liu Z M, Yang D Y, Ma N N, Meng Q W. 2016. Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco. Journal of Plant Physiology, 204, 54-65.

Liu C, Li J, Zhu P, Yu J, Hou J, Wang C, Long D, Yu M, Zhao A. 2019. Mulberry EIL3 confers salt and drought tolerances and modulates ethylene biosynthetic gene expression. PeerJ, 7.

Masri R, Kiss E. 2023. The role of NAC genes in response to biotic stresses in plants. Physiological and Molecular Plant Pathology, 126, 102034.

Puranik S, Sahu P P, Srivastava P S, Prasad M. 2012. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 17, 369-381.

Ramadoss B R, Gangola M P, Gurunathan S. 2020. Chapter 4 - NAC transcription factor family in rice: Recent advancements in the development of stress-tolerant rice. In: Wani S H (ed) Transcription factors for abiotic stress tolerance in plants. Academic Press, pp. 47-61.

Saidi M N, Mergby D, Souibgui A, Yacoubi I. 2022. Overexpression of durum wheat NAC transcription factor TtNTL3A promotes early flowering and increases multiple stress tolerance in transgenic arabidopsis. Plant Physiology and Biochemistry, 192, 1-9.

Samanta S, Seth C S, Roychoudhury A. 2024. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiology and Biochemistry, 206, 108259.

Sharma A, Gupta A, Ramakrishnan M, Ha C V, Zheng B, Bhardwaj M, Tran L-S P. 2023. Roles of abscisic acid and auxin in plants during drought: A molecular point of view. Plant Physiology and Biochemistry, 204, 108129.

Sreenivasulu N, Harshavardhan V T, Govind G, Seiler C, Kohli A. 2012. Contrapuntal role of aba: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506, 265-273.

Srivastava R, Kobayashi Y, Koyama H, Sahoo L. 2022. Overexpression of cowpea NAC transcription factors promoted growth and stress tolerance by boosting photosynthetic activity in Arabidopsis. Plant Science, 319, 111251.

Thanmalagan R R, Jayaprakash A, Roy A, Arunachalam A, Lakshmi P T V. 2022. A review on applications of plant network biology to understand the drought stress response in economically important cereal crops. Plant Gene, 29, 100345.

Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. 2018. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnology Journal, 16, 354-366.

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59-66.

Vurukonda S S K P, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24.

Wu X, Yuan J, Luo A, Chen Y, Fan Y. 2016. Drought stress and re-watering increase secondary metabolites and enzyme activity in Dendrobium moniliforme. Industrial Crops and Products, 94, 385-393.

Xu F, Yuan S, Zhang D W, Lv X, Lin H H. 2012a. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. Journal of Experimental Botany, 63, 5705-5716.

Xu F, Zhang D W, Zhu F, Tang H, Lv X, Cheng J, Xie H F, Lin H H. 2012b. A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. Plant Cell and Environment, 35, 1983-1997.

Yadav B, Jogawat A, Rahman M S, Narayan O P. 2021. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Reports, 23, 101040.

Yu L L, Liu C J, Peng Y, He Z Q, Xu F. 2022. New insights into the role of cyanide in the promotion of seed germination in tomato. BMC Plant Biology, 22, 28.

Yu L L, Liu Y, Peng Y, Zhu F, Xu F. 2021. Overexpression of cyanoalanine synthase 1 improves germinability of tobacco seeds under salt stress conditions. Environmental and Experimental Botany, 182, 104332.

Yu L L, Liu Y, Xu F. 2019. Comparative transcriptome analysis reveals significant differences in the regulation of gene expression between hydrogen cyanide- and ethylene-treated Arabidopsis thaliana. BMC Plant Biology, 19, 92.

Yu L L, Liu Y, Zhu F, Geng X X, Yang Y, He Z Q, Xu F. 2020. The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana. Biologia Plantarum, 64, 150-158.

Zhang H, Sun X, Dai M. 2022. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 3, 100228.

Zhang H, Zhao Y, Zhu J K. 2020. Thriving under stress: How plants balance growth and the stress response. Developmental Cell, 55, 529-543.

Zhao S Y, Zeng W H, Li Z, Peng Y. 2020. Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biologia Plantarum, 64, 406-416.

Zia R, Nawaz M S, Siddique M J, Hakim S, Imran A. 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, 126626.

[1] Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[2] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[3] Xuemei Hou, Meimei Shi, Zhuohui Zhang, Yandong Yao, Yihua Li, Changxia Li, Wenjin Yu, Chunlei Wang, Weibiao Liao. DNA demethylation is involved in nitric oxide-induced flowering in tomato[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1769-1785.
[4] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[5] Ru Bao, Tianli Guo, Zehua Yang, Chengyu Feng, Junyao Wu, Xiaomin Fu, Liu Hu, Changhai Liu, Fengwang Ma. Overexpression of the apple m6A demethylase gene MdALKBH1A regulates resistance to heat stress and fixed-carbon starvation[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1489-1502.
[6] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[7] Long Cui, Fangyan Zheng, Chenhui Zhang, Sunan Gao, Jie Ye, Yuyang Zhang, Taotao Wang, Zonglie Hong, Zhibiao Ye, Junhong Zhang. The CONSTANS-LIKE SlCOL1 in tomato regulates the fruit chlorophyll content by stabilizing the GOLDEN2-LIKE protein[J]. >Journal of Integrative Agriculture, 2025, 24(2): 536-545.
[8] Peiyu Zhang, Guoning Zhu, Chunjiao Zhang, Hongliang Zhu. Functional analysis of tomato MAP65 gene family, highlighting SlMAP65-1’s role in fruit morphogenesis[J]. >Journal of Integrative Agriculture, 2025, 24(2): 564-574.
[9] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[10] Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2255-2269.
[11] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[12] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[13] Sihua Yang, Junyi Li, Shuai Yang, Shiqiao Tang, Huizhong Wang, Chunling Xu, Hui Xie.

A chorismate mutase from Radopholus similis plays an essential role in pathogenicity [J]. >Journal of Integrative Agriculture, 2024, 23(3): 923-937.

[14] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[15] Na Chang, Xiaotian Pi, Ziwen Zhou, Yeyun Li, Xianchen Zhang. Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3737-3750.
No Suggested Reading articles found!