Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 1082-1092    DOI: 10.1016/j.jia.2022.08.121
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization of the microbial community response to replant diseases in peach orchards

LI Wei-hua1, 2*, CHEN Peng1, 3*, WANG Yu-zhu4, LIU Qi-zhi1#

1 Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China

2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R.China

3 Key Laboratory of Natural Enemies Insects of Ministry of Agriculture and Rural Affairs, Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

4 Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

以不同年份再植桃园根系土壤为材料,探究再植桃园微生物群落结构的变化情况,并进一步揭示不同年份的再植桃园微生物群落和土壤养分之间的关系,以期为桃树再植病调控提供理论依据。分别收集非再植(NRS)和再植(RS(再植1RS1、再植3RS3、再植5RS5、再植7RS7、再植9RS9、再植11RS11)桃园桃树的根际土壤,利用高通量测序技术测定土壤细菌和真菌群落的多样性,同时采用RDA分析土壤微生物群落与土壤环境因子之间的关系。结果显示,RS早期(1-5年)的土壤养分含量低于NRS,但随着桃树种植年限的增加,它们之间的差异逐渐缩小,直至达到相近的水平。细菌和真菌群落的alpha多样性指数表明,RSNRS含有更高丰度的细菌和真菌OUT含量NMDSANOSIM分析表明,土壤细菌和真菌群落显著受种植年限影响(p<0.01),变化主要发生在种植1年和9年。从目的分类水平看,再植桃园土壤中,Sphingobacteriales, Burkholderiales 和 Actinomycetales显著发生变化。一些与生物修复相关的细菌,如Burkholderiales目 和 Intrasporangiaceae纲,以及一些有害的病原真菌,如Penicillium属 和 Ophiostomatales纲,在再植桃园中显着增加(LDA> 3.0)。此外, RDA结果表明微生物群落的组成与环境各因子(pHAPAN AK间存在密切相关。从细菌门的分类水平看,这些环境变量与Acidobacteria, Chloroflexi, 和 Actinobacteria呈正相关,与Proteobacteria 和 Firmicutes呈负相关。在真菌门水平中,Basidiomycota门在 pHAP AN 增加的环境中增强,而Ascomycota, Chytridiomycota 和 Zygomycota门与 AK 呈正相关。RS的细菌和真菌群落多样性高于NRS树再植病害的发生与土壤微生物群落的变化密切相关。我们的研究结果详细阐明了不同年份的 NRS RS微生物群落的变化情况以及两者之间土壤理化和微生物群落变化之间的关系。这些结果使人们更加深入的了解再植桃园微生物群落的变化,为桃树再植病的解决提供思路。



Abstract  

This study attempted to monitor the development of microbial communities and reveal the correlation between the soil microbial community and soil nutrient factors over different years following the replanting of peach trees.  The replanted soil (RS) and nonreplanted soil (NRS) were collected from peach orchards with different growth years (1, 3, 5, 7, 9, 11, and 13 years) in the same region.  The soil bacterial and fungal community diversities were analyzed by high-throughput sequencing technology.  Redundancy analysis (RDA) was used to show the correlation between the soil microbial community and environmental variables.  The alpha diversities of the bacterial and fungal communities indicated that RS contained a higher abundance of bacterial and fungal operational taxonomic units (OTUs) than NRS.  NMDS and ANOSIM analyses showed that the soil bacterial and fungal communities were significantly (P<0.01) affected by planting years, and that the main changes occurred in the first and ninth planting years.  The presence of the bacterial orders Sphingobacteriales, Burkholderiales and Actinomycetales changed significantly after replanting.  Some bacteria associated with bioremediation, such as Burkholderiales and Intrasporangiaceae, and some harmful pathogens, such as Penicillium and Ophiostomatales, significantly increased after replanting (LDA score>3.0).  In addition, the soil nutrient contents were lower in RS than in NRS in the early stage (1–5 years), and the RDA showed that bacterial and fungal phyla are closely associated with environmental variables, including the potential of hydrogen (pH), ammonium nitrogen (AN), available phosphorus (AP) and available potassium (AK).  These results lead to a deeper understanding of the microbial responses to replanting in peach orchards. 

Keywords:  replant disease       complex syndrome       microbial community       high-throughput sequencing       environmental variables  
Received: 28 January 2022   Accepted: 06 May 2022
Fund: This work was supported by the National Science and Technology Support Program of China (2014BAD20B01 and 2014BAD16B07), the National Key R&D Program of China (2019YFE0120400), and the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2021B13 and CXGC2022D06).
About author:  Received 28 January, 2022 Accepted 6 May, 2022 LI Wei-hua, E-mail: 2006054074@163.com; CHEN Peng, E-mail: cpengchina@126.com; #Correspondence LIU Qi-zhi, Mobile: +86-18519264197, E-mail: lqzzyx163@163.com * These authors contributed equally to this study.

Cite this article: 

LI Wei-hua, CHEN Peng, WANG Yu-zhu, LIU Qi-zhi. 2023. Characterization of the microbial community response to replant diseases in peach orchards. Journal of Integrative Agriculture, 22(4): 1082-1092.

Ahmadjian V, John C, Moore A D. 2019. Fungus. In: Encyclopædia Britannica. Austin, TX, US.
Arneson P A, Mai W F. 1976. Root diseases of fruit trees in New York State. VII. Costs and returns of preplant soil fumigation in a replanted apple orchard. Plant Disease Reporter, 60, 1054–1057.
Bakker A W, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19, 451–457. 
Benizri E, Piutti S, Verger S, Pagès L, Vercambre G, Poessel J L, Michelot P. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biology and Biochemistry, 37, 1738–1746. 
Braun P G. 1995. Effects of Cylindrocarpon and Pythium species on apple seedlings and potential role in apple replant disease. Canadian Journal of Plant Pathology, 17, 336–341. 
Bull C T, Coutinho T A, Denny T P, Firrao G,  Fischer-Le Saux M, Li X, Saddler G S, Scortichini M, Stead D E, Takikawa Y. 2015. List of new names of plant pathogenic bacteria (2011–2012). Journal of Plant Pathology, 96, 223–226. 
Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martínez-Aguilar L. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, 73, 5308–5319. 
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Pena A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335. 
Catska V. 1993. Fruit tree replant problem and microbial antagonism in soil. Acta Horticulturae, 324, 23–33. 
Chaparro J M, Badri D V, Vivanco J M. 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 8, 790. 
Chen S, Qi G, Luo T, Zhang H, Jiang Q, Wang R, Zhao X. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation & Development, 29, 4106–4120.
Chester L F, Charles R D, Carlton L P. 1996. Impact of herbicides applied annually for twenty-three years in a deciduous orchard. Weed Technology, 10, 587–591. 
Derrick K S, Timmer L W. 2000. Citrus blight and other diseases of recalcitrant etiology. Annual Review of Phytopathology, 38, 181. 
Dietrich P, Buchmann T, Cesarz S, Eisenhauer N, Roscher C. 2017. Fertilization, soil and plant community characteristics determine soil microbial activity in managed temperate grasslands. Plant and Soil, 419, 189–199. 
Erika M, Péter S, Otto S, David D, Nachtergaele F. 2006. World reference base for soil resources: 2006: A framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Evtushenko L I, Takeuchi M. 2006. The family Microbacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E, eds., The Prokaryotes. Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer, New York, NY. pp. 1020–1098. 
Guo Q, Yan L, Korpelainen H, Niinemets Ü, Li C. 2019. Plant–plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology and Biochemistry, 128, 127–138. 
Gur A, Cohen Y. 1989. The peach replant problem - some causal agents. Soil Biology and Biochemistry, 21, 829–834.
Hoestra H. 1968. Replant Diseases of Apple in the Netherlands. Wageningen H. Veenman, The Kingdom of the Netherlands.
Kuske C R, Ticknor L O, Busch J D, Gehring C A, Whitham T G. 2003. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils. Microbial Ecology, 45, 340–352.
Laurent P, Raaijmakers J.M, Philippe L, Putten W H V D. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.
Li H N, Liu W X, Dai L, Wan F H, Cao Y Y. 2009. Invasive impacts of Ageratina adenophora (Asteraceae) on the changes of microbial community structure, enzyme activity and fertility in soil ecosystem. Scientia Agricultura Sinica, 42, 3964–3971. (in Chinese) 
Li W H, Liu Q Z 2019. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse. Journal of Integrative Agriculture, 18, 677–687. 
Li W H, Liu Q Z, Chen P. 2018. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. Journal of Integrative Agriculture, 17, 2570–2582. 
Li X Y, Liu Q Z, Wang Y Z, Sun H Y, Bai C Q, Lewis E. 2015. Different changes of soil nematode communities in replant and continuous-planting peach orchards and their indicative value for peach replant problem. Helminthologia, 3, 261–269. 
Lladó S, López-Mondéjar R, Baldrian P. 2017. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81, e16–e63. 
Mahenthiralingam E, Urban T A, Goldberg J B. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nature Reviews Microbiology, 3, 144–156. 
Mai W, Abawi G. 1981. Controlling replant diseases of pome and stone fruits in Northeastern United States by preplant fumigation. Plant Disease, 11, 859–864.
Manici L M, Ciavatta C, Kelderer M, Erschbaumer G. 2003. Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil, 256, 315–324.
Mazzola M. 1998. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 88, 930–938. 
Mazzola M. 1999. Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots. Phytopathology, 89, 920–927.
Mazzola M, Funnell D L, Raaijmakers J M. 2004. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbial Ecology, 48, 338–348. 
Pascual J, Blanco S, Ramos J L, Dillewijn P V. 2018. Responses of bulk and rhizosphere soil microbial communities to thermoclimatic changes in a Mediterranean ecosystem. Soil Biology and Biochemistry, 118, 130–144. 
Peterson A B, Hinman H. 1994. The economics of replanting apple orchards in Washington State. Acta Horticulturae, 363, 19–23. 
Potter D, Eriksson T, Evans R C, Oh S, Smedmark J E E, Morgan D R, Kerr M, Robertson K R, Arsenault M, Dickinson T A. 2007. Phylogeny and classification of Rosaceae. Plant Systematics & Evolution, 266, 5–43. 
Ruiz Palomino M, Lucas García J A, Ramos B, Gutierrez Mañero F J, Probanza A. 2005. Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterial communities throughout a phenological cycle. Applied Soil Ecology, 29, 215–224. 
Rumberger A, Marschner P. 2003. 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biology and Biochemistry, 35, 445–452. 
Rumberger A, Merwin I A, Thies J E. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry, 39, 1645–1654. 
Rutto K L, Mizutani F. 2006. Peach seedling growth in replant and non-replant soils after inoculation with arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 38, 2536–2542. 
Sarkar D. 2005. Physical and Chemical Methods in Soil Analysis. New Age International Publishers, India.
van Schoor L, Denman S, Cook N. 2009. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae, 2, 153–162. 
Stackebrandt E, Rainey F A, Ward-Rainey N L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic and Evolutionary Microbiology, 47, 479–491.
Stackebrandt E, Scheuner C, Göker M, Schumann P. 2014. The family Intrasporangiaceae. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F, eds., The Prokaryotes: Actinobacteria. Springer, Berlin, Heidelberg. pp. 397–424.
Tewoldemedhin Y T, Mazzola M, Labuschagne I, McLeod A. 2011. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology and Biochemistry, 43, 1917–1927.
Tournas V H. 2005. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31, 33–44. 
Traquair J A. 1984. Etiology and control of orchard replant problems: A review. Canadian Journal of Plant Pathology, 6, 54–62. 
Trujillo M E, Hong K, Genilloud O. 2014. The family micromonosporaceae. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F, eds., The Prokaryotes: Actinobacteria. Springer, Berlin, Heidelberg. pp. 499–569.
Utkhede R S, Sholberg P L, Smirle M J. 2001. Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infected soil. Canadian Journal of Plant Pathology, 23, 163–167.
Wolters V. 2000. Invertebrate control of soil organic matter stability. Biology & Fertility of Soils, 31, 1–19. 
Woltz S S. 1978. Nonparasitic plant pathogens. Annual Review of Phytopathology, 16, 403–430.
Xu F, Cai T, Yang X, Sui W. 2017. Soil fungal community variation by large-scale reclamation in Sanjiang plain, China. Annals of Microbiology, 67, 679–689. 
Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov, Sphingomonas parapaucimobilis sp. nov, Sphingomonas yanoikuyae sp. nov, Sphingomonas adhaesiva sp. nov, Sphingomonas capsulata comb, nov, and two genospecies of the genus Sphingomonas. Microbiology and Immunology, 34, 99–119. 
Yakov K, Xingliang X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656–669.
Yao S, Merwin I A, Abawi G S, Thies J E. 2006. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biology Biochemistry, 38, 587–599.  


[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[3] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[4] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
[5] Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2134-2144.
[6] LIU Han-wen, ZHANG Xiao-ke, ZHANG Gui-zong, KOU Xin-chang, LIANG Wen-ju. Partial organic substitution weakens the negative effect of chemical fertilizer on soil micro-food webs[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3037-3050.
[7] LI Bao-zhen, Anna GUNINA, Mostafa ZHRAN, Davey L. JONES, Paul W. HILL, HU Ya-jun, GE Ti-da, WU Jin-shui. Fate of low-molecular-weight organic phosphorus compounds in the P-rich and P-poor paddy soils[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2526-2534.
[8] ZHANG Mei-jun, JIA Ju-qing, LU Hua, FENG Mei-chen, YANG Wu-de. Functional diversity of soil microbial communities in response to supplementing 50% of the mineral N fertilizer with organic fertilizer in an oat field[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2255-2264.
[9] Ebrahim SHEHATA, CHENG Deng-miao, MA Qian-qian, LI Yan-li, LIU Yuan-wang, FENG Yao, JI Zhen-yu, LI Zhao-jun . Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1649-1659.
[10] CHANG Hui-qing, ZHU Xiao-hui, WU Jie, GUO Da-yong, ZHANG Lian-he, FENG Yao. Dynamics of microbial diversity during the composting of agricultural straw[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1121-1136.
[11] JIN Na, LIU Shi-ming, PENG Huan, HUANG Wen-kun, KONG Ling-an, PENG De-liang. Effect of Aspergillus niger NBC001 on the soybean rhizosphere microbial community in a soybean cyst nematode-infested field[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3230-3239.
[12] ZHAO Shi-cheng, Ignacio A. CIAMPITTI, QIU Shao-jun, XU Xin-peng, HE Ping. Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3289-3298.
[13] WANG Qi-qi, LIU Ling-ling, LI Yu, QIN Song, WANG Chuan-jie, CAI An-dong, WU Lei, XU Ming-gang, ZHANG Wen-ju.
Long-term fertilization leads to specific PLFA finger-prints in Chinese Hapludults soil
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1354-1362.
[14] LIN Wei-peng, JIANG Ni-hao, PENG Li, FAN Xue-ying, GAO Yang, WANG Guo-ping, CAI Kun-zheng . Silicon impacts on soil microflora under Ralstonia Solanacearum inoculation[J]. >Journal of Integrative Agriculture, 2020, 19(1): 251-264.
[15] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
No Suggested Reading articles found!