Special Issue:
动物科学合辑Animal Science
|
|
|
Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs |
LONG Ke-ren1*, LI Xiao-kai1*, ZHANG Ruo-wei1*, GU Yi-ren2*, DU Min-jie5, XING Xiang-yang5, DU Jia-xiang5, MAI Miao-miao1, WANG Jing1, JIN Long1, TANG Qian-zi1, HU Si-lu1, MA Ji-deng1, WANG Xun1, PAN Deng-ke3, 4, LI Ming-zhou1 |
1 Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Animal Breeding and Genetics Key Laboratory of Sichuan Province, Pig Science Institute, Sichuan Animal Science Academy, Chengdu 610066, P.R.China
3 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
4 Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, P.R.China
5 Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu 610041, P.R.China
|
|
|
摘要
本研究制备了在骨骼肌组织中特异表达人FST基因的转基因(TG)猪,并进行了表型鉴定。相较于野生型(WT)猪,TG猪骨骼肌重量显著增加(P<0.05),脂肪沉积显著减少(P<0.05),代谢状态显著改善(P<0.05)。根据表型变化,利用RNA-seq技术对WT猪和TG猪的骨骼肌(酵解型:背最长肌,氧化型:腰大肌)、白色脂肪(皮下脂肪:背部皮下脂肪,内脏脂肪:腹膜后脂肪)和肝脏共6个组织进行了转录组比较分析。结果表明,PIK3-AKT信号通路、钙离子信号通路及氨基酸代谢通路在FST诱导的骨骼肌肥大中具有重要作用;MYH7基因(决定I型肌纤维)表达量的相对比例在TG猪腰大肌中显著减低,氧化磷酸化和脂肪酸代谢等相关信号通路也在TG猪腰大肌中显著下调;相较于WT猪,TG猪脂肪中的AMPK信号通路、脂代谢相关通路发生显著变化,脂质合成、脂质分解及脂质储存相关基因表达量在皮下脂肪中显著降低,脂质分解相关基因表达量在腹膜后脂肪组织中显著升高。肝脏组织中,TGF-β信号通路相关基因在TG猪中显著下调。这些结果将有助于理解卵泡抑素引起猪表型变化的分子机制,为该候选靶点进一步在分子育种中的应用提供了基础数据。
Abstract
Follistatin (FST) is an important regulator of skeletal muscle growth and adipose deposition through its ability to bind to several members of the transforming growth factor-β (TGF-β) superfamily, and thus may be a good candidate for future animal breeding programs. However, the molecular mechanisms underlying the phenotypic changes have yet to be clarified in pig. We generated transgenic (TG) pigs that express human FST specifically in skeletal muscle tissues and characterized the phenotypic changes compared with the same tissues in wild-type pigs. The TG pigs showed increased skeletal muscle growth, decreased adipose deposition, and improved metabolism status (P<0.05). Transcriptome analysis detected important roles of the PIK3–AKT signaling pathway, calcium-mediated signaling pathway, and amino acid metabolism pathway in FST-induced skeletal muscle hypertrophy, and depot-specific oxidative metabolism changes in psoas major muscle. Furthermore, the lipid metabolism-related process was changed in adipose tissue in the TG pigs. Gene set enrichment analysis revealed that genes related to lipid synthesis, lipid catabolism, and lipid storage were down-regulated (P<0.01) in the TG pigs for subcutaneous fat, whereas genes related to lipid catabolism were significantly up-regulated (P<0.05) in the TG pigs for retroperitoneal fat compared with their expression levels in wild-type pigs. In liver, genes related to the TGF-β signaling pathway were over-represented in the TG pigs, which is consistent with the inhibitory role of FST in regulating TGF-β signaling. Together, these results provide new insights into the molecular mechanisms underlying the phenotypic changes in pig.
|
Received: 16 June 2021
Accepted: 07 March 2022
|
Fund:
This work was supported by grants from the National Key R&D Program of China (2020YFA0509500), the National Natural Science Foundation of China (U19A2036, 32102512, 31872335, and 31802044), the National Special Foundation for Transgenic Species of China (2014ZX0800605B), the Sichuan Science and Technology Program, China (2021YFYZ0009 and 2021YFYZ0030).
|
About author: LONG Ke-ren, E-mail: keren.long@sicau.edu.cn; LI Xiao-kai, E-mail: xiaokai_li2017@163.com; ZHANG Ruo-wei, E-mail: ruowei2021@163.com; GU Yi-ren, E-mail: guyiren1128@163.com; Correspondence LI Ming-zhou, E-mail: mingzhou.li@sicau.edu.cn; PAN Deng-ke, E-mail: pandengke2002@163.com
* These authors contributed equally to this study. |
Cite this article:
LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou.
2022.
Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs. Journal of Integrative Agriculture, 21(9): 2675-2690.
|
Bechmann L P, Hannivoort R A, Gerken G, Hotamisligil G S, Trauner M, Canbay A. 2012. The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology, 56, 952–964.
Benabdallah B F, Bouchentouf M, Rousseau J, Bigey P, Michaud A, Chapdelaine P, Scherman D, Tremblay J P. 2008. Inhibiting myostatin with follistatin improves the success of myoblast transplantation in dystrophic mice. Cell Transplantation, 17, 337–350.
Chang F, Fang R, Wang M, Zhao X, Chang W, Zhang Z, Li N, Meng Q. 2017. The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs. Transgenic Research, 26, 25–36.
Dawood A A, Elmorsy O A, Demerdash H M. 2017. Serum chemerin and diabetic retinopathy in type 2 diabetic patients. The Egyptian Journal of Internal Medicine, 29, 117–121.
Elashry M I, Otto A, Matsakas A, El-Morsy S E, Patel K. 2009. Morphology and myofiber composition of skeletal musculature of the forelimb in young and aged wild type and myostatin null mice. Rejuvenation Research, 12, 269–281.
Etich J, Koch M, Wagener R, Zaucke F, Fabri M, Brachvogel B. 2019. Gene expression profiling of the extracellular matrix signature in macrophages of different activation status: Relevance for skin wound healing. International Journal of Molecular Sciences, 20, 5086.
Gangopadhyay S S. 2013. Systemic administration of follistatin288 increases muscle mass and reduces fat accumulation in mice. Scientific Reports, 3, 1–8.
Ghosh S, Chan Chon K K. 2016. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods in Molecular Biology, 1374, 339–361.
Gilson H, Schakman O, Kalista S, Lause P, Thissen J P. 2009. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. American Journal of Physiology (Endocrinology and Metabolism), 297, E157–E164.
Gumucio J P, Sugg K B, Mendias C L. 2015. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exercise and Sport Sciences Reviews, 43, 93–99.
Guo T, William J, Tatyana C, Jennifer P, Oksana G, Mcpherron A C, Calbet J. 2009. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE, 4, e4937.
Han X, Moller L L, De Groote E, Bojsen-Moller K K, Davey J, Henriquez-Olguin C, Li Z, Knudsen J R, Jensen T E, Madsbad S. 2019. Mechanisms involved in follistatin-induced increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 10, 1241–1257.
Hu C, Kasten J, Park H, Bhargava R, Tai D S, Grody W W, Nguyen Q G, Hauschka S D, Cederbaum S D, Lipshutz, G S. 2014. Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice. Molecular Therapy, 22, 1792–1802.
Huang F, Zhan Z, Luo J, Liu Z, Peng J. 2008. Duration of dietary linseed feeding affects the intramuscular fat, muscle mass and fatty acid composition in pig muscle. Livestock Science, 118, 132–139.
Huber J, Löffler M, Bilban M, Reimers M, Kadl A, Todoric J, Zeyda M, Geyeregger R, Schreiner M, Weichhart T. 2007. Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. International Journal of Obesity, 31, 1004–1013.
Ito N, Ruegg U T, Kudo A, Miyagoe-Suzuki Y, Takeda S I. 2013. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature Medicine, 19, 101–106.
Jordi C, Yuliaxis R C, Anna P O, Dafne P M, Noguera J L, Folch J M, Maria B. 2013. Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. PLoS ONE, 8, e53687.
Kota J, Handy C R, Haidet A M, Montgomery C L, Eagle A, Rodino-Klapac L R, Tucker D, Shilling C J, Therlfall W R, Walker C M. 2009. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Science Translational Medicine, 1, 6ra15.
Kure S, Kojima K, Kudo T, Kanno K, Aoki Y, Suzuki Y, Shinka T, Sakata Y, Narisawa K, Matsubara Y. 2001. Chromosomal localization, structure, single-nucleotide polymorphisms, and expression of the human H-protein gene of the glycine cleavage system (GCSH), a candidate gene for nonketotic hyperglycinemia. Journal of Human Genetics, 46, 378–384.
Lai C Q, Tai E S, Tan C E, Cutter J, Chew S K, Zhu Y P, Adiconis X, Ordovas J M. 2003. The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. Journal of Lipid Research, 44, 2365–2373.
Lai K M V, Gonzalez M, Poueymirou W T, Kline W O, Na E, Zlotchenko E, Stitt T N, Economides A N, Yancopoulos G D, Glass D J. 2004. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Molecular and Cellular Biology, 24, 9295–9304.
Lee M J, Wu Y, Fried S K. 2013. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Molecular Aspects of Medicine, 34, 1–11.
Li H, Zhang C, Liu J, Xie W, Xu W, Liang F, Huang K, He X. 2019. Intraperitoneal administration of follistatin promotes adipocyte browning in high-fat diet-induced obese mice. PLoS ONE, 14, e0220310.
Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D. 2021. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. Molecular Therapy (Nucleic Acids), 26, 49–62.
Ling Y, Carayol J, Galusca B, Canto C, Montaurier C, Matone A, Vassallo I, Minehira K, Alexandre V, Cominetti O. 2019. Persistent low body weight in humans is associated with higher mitochondrial activity in white adipose tissue. The American Journal of Clinical Nutrition, 110, 605–616.
Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.
Macias M J, Martin-Malpartida P, Massagué J. 2015. Structural determinants of Smad function in TGF-β signaling. Trends in Biochemical Sciences, 40, 296–308.
Manabe R I, Tsutsui K, Yamada T, Kimura M, Nakano I, Shimono C, Sanzen N, Furutani Y, Fukuda T, Oguri Y. 2008. Transcriptome-based systematic identification of extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105, 12849–12854.
Matsuzaka T, Shimano H. 2009. Elovl6: A new player in fatty acid metabolism and insulin sensitivity. Journal of Molecular Medicine, 87, 379–384.
Mendias C L, Schwartz A J, Grekin J A, Gumucio J P, Sugg K B. 2017. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. Journal of Applied Physiology, 122, 571–579.
Miana M, Galán M, Martínez-Martínez E, Varona S, Jurado-López R, Bausa-Miranda B, Antequera A, Luaces M, Martínez-González J, Rodríguez C. 2015. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats. Disease Models & Mechanisms, 8, 543–551.
Mou P, Chen Z, Jiang L, Cheng J, Wei R. 2018. PTX3: A potential biomarker in thyroid associated ophthalmopathy. BioMed Research International, 2018, 5961974.
National Research Council (NRC). 2012. Nutrient Requirements of Swine. 11th revised ed. National Academic, Washington. p. 420.
Nguyen P, Leray V, Diez M, Serisier S, Bloc’h J L, Siliart B, Dumon H. 2008. Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition, 92, 272–283.
Okumura N, Hashida-Okumura A, Kita K, Matsubae M, Matsubara T, Takao T, Nagai K. 2005. Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics, 5, 2896–2906.
Oppenheim J J. 2020. Cytokines, their receptors and signals. 5th ed. In: The Autoimmune Diseases. Elsevier, USA. pp. 229–241.
Ota F, Maeshima A, Yamashita S, Ikeuchi H, Kaneko Y, Kuroiwa T, Hiromura K, Ueki K, Kojima I, Nojima Y. 2003. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism, 48, 2442–2449.
Pan D, Zhang L, Zhou Y, Feng C, Long C, Liu X, Wan R, Zhang J, Lin A, Dong E. 2010. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Science China Life Sciences, 53, 517–523.
Patel K. 1998. Follistatin. The International Journal of Biochemistry and Cell Biology, 30, 1087–1093.
Ricard-Blum S, Bernocco S, Font B, Moali C, Eichenberger D, Farjanel J, Burchardt E R, van der Rest M, Kessler E, Hulmes D J. 2002. Interaction properties of the procollagen C-proteinase enhancer protein shed light on the mechanism of stimulation of BMP-1. Journal of Biological Chemistry, 277, 33864–33869.
Perakakis N, Upadhyay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis A D, Mantzoros C S. 2018. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism, 85, 240–249.
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295.
Priore Oliva C, Carubbi F, Schaap F G, Bertolini S, Calandra S. 2008. Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency due to a novel mutation in the APOA5 gene. Journal of Internal Medicine, 263, 450–458.
Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5, 1–13.
Raz V, Riaz M, Tatum Z, Kielbasa S M, Hoen P A. 2018. The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. The FASEB Journal, 32, 1579–1590.
Rubenstein A B, Smith G R, Raue U, Begue G, Minchev K, Ruf-Zamojski F, Nair V D, Wang X, Zhou L, Zaslavsky E. 2020. Single-cell transcriptional profiles in human skeletal muscle. Scientific Reports, 10, 1–15.
Rui L. 2011. Energy metabolism in the liver. Comprehensive Physiology, 4, 177–197.
Schumann C, Nguyen D X, Norgard M, Bortnyak Y, Korzun T, Chan S, Lorenz A S, Moses A S, Albarqi H A, Wong L, Michaelis K, Zhu X, Alani A W G, Taratula O R, Krasnow S, Marks D L, Taratula O. 2018. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics, 8, 5276–5288.
Shan T, Liang X, Bi P, Kuang S. 2013. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. The FASEB Journal, 27, 1981–1989.
Sharma V, Beckstead J A, Simonsen J B, Nelbach L, Watson G, Forte T M, Ryan R O. 2013. Gene transfer of apolipoprotein AV improves the hypertriglyceridemic phenotype of apoa5 (−/−) mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 474–480.
Singh R, Braga M, Reddy S T, Lee S J, Parveen M, Grijalva V, Vergnes L, Pervin S. 2017. Follistatin targets distinct pathways to promote brown adipocyte characteristics in brown and white adipose tissues. Endocrinology, 158, 1217–1230.
Singh R, Pervin S, Lee S J, Kuo A, Grijalva V, David J, Vergnes L, Reddy S T. 2018. Metabolic profiling of follistatin overexpression: A novel therapeutic strategy for metabolic diseases. Diabetes, Metabolic Syndrome and Obesity, 11, 65–84.
Takashina C, Tsujino I, Watanabe T, Sakaue S, Ikeda D, Yamada A, Sato T, Ohira H, Otsuka Y, Oyama-Manabe N. 2016. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance. Nutrition and Metabolism, 13, 5.
Tao R, Wang C, Stohr O, Qiu W, Hu Y, Miao J, Dong X C, Leng S, Stefater M, Stylopoulos N, Lin L, Copps K D, White M F. 2018. Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine, 24, 1058–1069.
Winbanks C E, Weeks K L, Thomson R E, Sepulveda P V, Beyer C, Qian H, Chen J L, Allen J M, Lancaster G I, Febbraio M A, Harrison C A, McMullen J R, Chamberlain J S, Gregorevic P. 2012. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. Journal of Cell Biology, 197, 997–1008.
Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, Shuai L, Li J, Li J. 2018. AMP-activated protein kinase (AMPK) regulates rnergy metabolism through modulating thermogenesis in adipose tissue. Frontiers in Physiology, 9, 122.
Yaden B C, Croy J E, Wang Y, Wilson J M, Datta-Mannan A, Shetler P, Milner A, Bryant H U, Andrews J, Dai G, Krishnan V. 2014. Follistatin: A novel therapeutic for the improvement of muscle regeneration. The Journal of Pharmacology and Experimental Therapeutics, 349, 355–371.
Yang R Z, Lee M J, Hu H, Pollin T I, Ryan A S, Nicklas B J, Snitker S, Horenstein R B, Hull K, Goldberg N H. 2006. Acute-phase serum amyloid A: An inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Medicine, 3, e287.
Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr G A, Backer J M. 1998. Regulation of the p85/p110 phosphatidylinositol 3´-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Molecular and Cellular Biology, 18, 1379–1387.
Zhang Y E. 2009. Non-smad pathways in TGF-β signaling. Cell Research, 19, 128–139.
Zou Y Z, Zhang R Z, Sabatelli P, Chu M L, Bönnemann C G. 2008. Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. Journal of Neuropathology and Experimental Neurology, 67, 144–154.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|