Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1502-1513    DOI: 10.1016/j.jia.2022.08.116
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
MicroRNA transcriptome of skeletal muscle during yak development reveals miR-652 regulates myoblasts differentiation and survival by targeting ISL1

ZHOU Xue-lan1, 2, GUO Xian1, 2, LIANG Chun-nian1, 2, CHU Min1, 2, WU Xiao-yun1, 2#, YAN Ping1, 2#

1 Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R.China

2 Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【背景】牦牛骨骼肌的生长发育决定其产肉量,进而影响经济收入。因此提高牦牛的产肉性能是发展牦牛产业的重要任务。骨骼肌发育过程受许多基因的调控,包括一些非编码RNA的调控,如miRNA。然而牦牛出生前后骨骼肌中miRNA的转录调控机制并不清楚。【目的】通过小RNA测序挖掘与牦牛骨骼肌生长发育有关的miRNA,并通过C2C12细胞对候选miRNA进行功能研究,为牦牛骨骼肌发育机制解析提供基础。【方法】对出生前后牦牛背最长肌(3个胎牛和3个成年牛)进行miRNA转录本测序,基于(log2 (差异倍数) |>1P≤0.05筛选差异miRNAs,并通过Miranda和TargetScan算法预测差异miRNAs靶基因并求交集,对差异miRNA靶基因进行GOKEGG富集分析。在C2C12细胞中通过干扰和过表达实验对候选miRNA进行功能分析,通过双荧光素酶实验验证候选miRNA的靶基因。【结果】本研究在胎牛和成年牦牛背最长肌中共鉴定到264miRNAs264个差异miRNAs共预测到5183个靶基因。GOKEGG结果显示,差异miRNA的靶基因主要富集在能量平衡,蛋白激酶结合,ATP结合等GO条目,及一些与肌肉发育有关的信号通路,如MAPK,PI3K-Akt,Hippo等信号通路。其中候选miR-652在胎牛背最长肌中上调表达。通过在C2C12细胞中转染miR-652发现,miR-652可促进C2C12细胞的增殖和分化(P≤0.05),同时抑制C2C12细胞晚期凋亡(P≤0.001)。细胞周期实验结果显示,miR-652可导致C2C12细胞百分比在G1期下降(P≤0.001),S期和G2期上升(P≤0.01)。双荧光素酶实验结果提示ISL1miR-652的一个靶基因。【结论】牦牛在出生前后骨骼肌中存在大量差异表达的miRNA,表明miRNA参与牦牛骨骼肌发育,miR-652可能通过靶向ISL1基因调控牦牛骨骼肌生长发育。



Abstract  

The growth and development of skeletal muscle also determine the meat production of yak, ultimately affecting the economic benefits.  Hence, improving growth performance is a top priority in the yak industry.  Skeletal muscle development is a complex process involving the regulation of several genes, including microRNAs (miRNAs).  However, the transcription of miRNAs in yak skeletal muscle during prenatal to postnatal stages is unknown.  We used small RNA sequencing (small RNA-Seq) to determine the global miRNAs of longissimus dorsi muscle from yak (the samples were collected from three fetuses and three adults).  Totally 264 differently expressed miRNAs (|log2(fold change)|>1 and P-value≤0.05) were detected between the two groups.  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differently expressed miRNAs-targeted genes participated in pathways associated with muscle development, such as MAPK, PI3K-Akt, and Hippo signaling pathways, etc.  MiR-652, which was up-regulated in the fetal group, was transfected into C2C12 myoblasts to examine its role.  miR-652 promoted (P≤0.05) proliferation and differentiation, but inhibited (P≤0.001) apoptosis at early period.  Furthermore, miR-652 reduced (P≤0.001) the proportion of C2C12 myoblasts in the G1 phase while increasing (P≤0.01) the proportion of cells in the S and G2 phases.  Dual-luciferase reporter assays indicated that ISL1 served as a target of miR-652.  In general, these findings expand our understanding of yak skeletal muscle miRNAs, and suggested that miR-652 probably regulated myogenesis by regulating ISL1.

Keywords:  skeletal muscle        small RNA Sequencing        miR-652        C2C12 myoblast        ISL1  
Received: 05 January 2022   Accepted: 18 June 2022
Fund: 

This study was supported by the Agricultural Science and Technology Innovation Program, CAAS (25-LZIHPS-01), the China Agriculture Research System of MOF and MARA (CARS-37) and the National Natural Science Foundation of China (32102500).

About author:  ZHOU Xue-lan, E-mail: zhouxl17@lzu.edu.cn; #Correspondence YAN Ping, Tel: +86-931-2115288, E-mail: pingyanlz@163.com; WU Xiao-yun, Tel: +86-931-2115292, E-mail: wuxiaoyun@caas.cn

Cite this article: 

ZHOU Xue-lan, GUO Xian, LIANG Chun-nian, CHU Min, WU Xiao-yun, YAN Ping. 2023. MicroRNA transcriptome of skeletal muscle during yak development reveals miR-652 regulates myoblasts differentiation and survival by targeting ISL1. Journal of Integrative Agriculture, 22(5): 1502-1513.

Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. 2021. Prenatal skeletal muscle transcriptome analysis reveals novel microRNA–mRNA networks associated with intrauterine growth restriction in pigs. Cells, 10, 1007.
Bentzinger C F, Wang Y X, Rudnicki M A. 2012. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb Perspectives in Biology, 4, a008342.
Cai C L, Liang X, Shi Y, Chu P H, Pfaff S L, Chen J, Evans S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5, 877–889.
Chen M, Zhang S, Xu Z, Gao J, Mishra S K, Zhu Q, Zhao X, Wang Y, Yin H, Fan X, Zeng B, Yang M, Yang D, Ni Q, Li Y, Zhang M, Li D. 2020. MiRNA profiling in pectoral muscle throughout pre- to post-Natal stages of chicken development. Frontiers in Genetics, 11, 570.
Fan W, Gao X K, Rao X S, Shi Y P, Liu X C, Wang F Y, Liu Y F, Cong X X, He M Y, Xu S B, Shen W L, Shen Y, Yan S G, Luo Y, Low B C, Ouyang H, Bao Z, Zheng L L, Zhou Y T. 2018. Hsp70 interacts with mitogen-activated protein kinase (MAPK)-activated protein kinase 2 to regulate p38MAPK stability and myoblast differentiation during skeletal muscle regeneration. Molecular and Cellular Biology, 38, e00211–e00229.
Fu Y, Li S, Tong H, Li S, Yan Y. 2019. WDR13 promotes the differentiation of bovine skeletal muscle-derived satellite cells by affecting PI3K/AKT signaling. Cell Biology International, 43, 799–808.
Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, Caputo L, Gunther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans S M, Sun Y, Dobreva G. 2019. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Research, 29, 486–501.
Graves D C, Yablonka-Reuveni Z. 2000. Vascular smooth muscle cells spontaneously adopt a skeletal muscle phenotype: A unique Myf5(–)/MyoD(+) myogenic program. Journal of Histochemistry & Cytochemistry, 48, 1173–1193.
Hannon G. 2016. FASTX-Toolkit. [2016-01-16]. http://hannonlab.cshl.edu/fastx_toolkit/index.html
Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimarães-Camboa N, Evans S M, Tzahor E. 2009. Distinct origins and genetic programs of head muscle satellite cells. Developmental Cell, 16, 822–832.
Hernandez-Hernandez J M, Garcia-Gonzalez E G, Brun C E, Rudnicki M A. 2017. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell & Developmental Biology, 72, 10–18.
Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. 2012. Discovery of microRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS ONE, 7, e52123.
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. 2021. Comprehensive analysis of mRNA, lncRNA, circRNA, and miRNA expression profiles and their ceRNA networks in the longissimus dorsi muscle of Cattle-Yak and yak. Frontiers in Genetics, 12, 772557.
Ji H, Wang H, Ji Q, Ji W, Luo X, Wang J, Chai Z, Xin J, Cai X, Wu Z, Wang J, Zhong J. 2020. Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes & Genomics, 42, 1347–1359.
Jiang Q, Lu X, Huang P, Gao C, Zhao X, Xing T, Li G, Bao S, Zheng H. 2018. Expression of miR-652-3p and effect on apoptosis and drug sensitivity in pediatric acute lymphoblastic leukemia. Biomed Research International, 2018, 5724686.
Kim V N, Nam J W. 2006. Genomics of microRNA. Trends in Genetics, 22, 165–173.
Laugwitz K L, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin L Z, Cai C L, Lu M M, Reth M, Platoshyn O, Yuan J X, Evans S, Chien K R. 2005. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.
Lee J H, Kim S W, Han J S, Shin S P, Lee S I, Park T S. 2020. Functional analyses of miRNA-146b-5p during myogenic proliferation and differentiation in chicken myoblasts. BMC Molecular and Cell Biology, 21, 40.
Lee S, Park S J, Cheong J K, Ko J Y, Bong J, Baik M. 2017. Identification of circulating miRNA involved in meat yield of Korean cattle. Cell Biology International, 41, 761–768.
Levin J M, El A R, Dainat J, Reyne Y, Bacou F. 2001. SFRP2 expression in rabbit myogenic progenitor cells and in adult skeletal muscles. Journal of Muscle Research and Cell Motility, 22, 361–369.
Li C, Xiong T, Zhou M, Wan L, Xi S, Liu Q, Chen Y, Mao H, Liu S, Chen B. 2020. Characterization of microRNAs during embryonic skeletal muscle development in the shan ma duck. Animals (Basel), 10, 1417.
Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595.
Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B. 2012. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Research, 40, 4298–4305.
Liu Z, Li C, Li X, Yao Y, Ni W, Zhang X, Cao Y, Hazi W, Wang D, Quan R, Yu S, Wu Y, Niu S, Cui Y, Khan Y, Hu S. 2019. Expression profiles of microRNAs in skeletal muscle of sheep by deep sequencing. Asian–Australas Journal of Animal Sciences, 32, 757–766.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 25, 402–408.
Ma Y, Yang Y, Sun W, Zhou R, Li K, Tang Z. 2016. SFRP2 affects prenatal muscle development and is regulated by microRNA-1/206 in pigs. Journal of Integrative Agriculture, 15, 153–161.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17, 10–12. 
Moretti A, Caron L, Nakano A, Lam J T, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans S M, Laugwitz K L, Chien K R. 2006. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.
Picard B, Lefaucheur L, Berri C, Duclos M J. 2002. Muscle fibre ontogenesis in farm animal species. Reproduction Nutrition Development, 42, 415–431.
Robinson M D, Mccarthy D J, Smyth G K. 2010. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.
Shi Z, Liu B, Li Y, Liu F, Yuan X, Wang Y. 2019. MicroRNA-652-3p promotes the proliferation and invasion of the trophoblast HTR-8/SVneo cell line by targeting homeobox A9 to modulate the expression of ephrin receptor B4. Clinical and Experimental Pharmacology and Physiology, 46, 587–596.
Siengdee P, Trakooljul N, Murani E, Brand B, Schwerin M, Wimmers K, Ponsuksili S. 2015. Pre- and post-natal muscle microRNA expression profiles of two pig breeds differing in muscularity. Gene, 561, 190–198.
Tewari R S, Ala U, Accornero P, Baratta M, Miretti S. 2021. Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age. Scientific Reports, 11, 15815.
Timoneda O, Balcells I, Cordoba S, Castello A, Sanchez A. 2012. Determination of reference microRNAs for relative quantification in porcine tissues. PLoS ONE, 7, e44413.
Wang H, Zhang Q, Wang B, Wu W, Wei J, Li P, Huang R. 2018. MiR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. European Journal of Cell Biology, 97, 257–268.
Wang J, Hao Z, Hu J, Liu X, Li S, Wang J, Shen J, Song Y, Ke N, Luo Y. 2021a. Small RNA deep sequencing reveals the expressions of microRNAs in ovine mammary gland development at peak-lactation and during the non-lactating period. Genomics, 113, 637–646.
Wang J, Liu X, Wang Y, Xin B, Wang W. 2021b. The role of long noncoding RNA THAP9-AS1 in the osteogenic differentiation of dental pulp stem cells via the miR-652-3p/VEGFA axis. European Journal of Oral Sciences, 129, e12790.
Wei W, Li B, Liu K, Jiang A, Dong C, Jia C, Chen J, Liu H, Wu W. 2018. Identification of key microRNAs affecting drip loss in porcine longissimus dorsi by RNA-Seq. Gene, 647, 276–282.
White R B, Bierinx A S, Gnocchi V F, Zammit P S. 2010. Dynamics of muscle fibre growth during postnatal mouse development. BMC Developmental Biology, 10, 21.
Wiener G, Han J L, Long R J. 2003. The Yak. 2nd ed. Regional Office for Asia and the Pacific, Food and Agriculture Organization of the United Nations, Bangkok.
Wu N, Gu T, Lu L, Cao Z, Song Q, Wang Z, Zhang Y, Chang G, Xu Q, Chen G. 2019. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. Journal of Cellular Physiology, 234, 3490–3499.
Yang L, Cai C L, Lin L, Qyang Y, Chung C, Monteiro R M, Mummery C L, Fishman G I, Cogen A, Evans S. 2006. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development, 133, 1575–1585.
Yang L, Qi Q, Wang J, Song C, Wang Y, Chen X, Chen H, Zhang C, Hu L, Fang X. 2021. MiR-452 regulates C2C12 myoblast proliferation and differentiation via targeting ANGPT1. Frontiers in Genetics, 12, 640807.
Yang W, Zhou C, Luo M, Shi X, Li Y, Sun Z, Zhou F, Chen Z, He J. 2016. MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget, 7, 16703–16715.
Ye Z, Shi J, Ning Z, Hou L, Hu C Y, Wang C. 2020. MiR-92b-3p inhibits proliferation and migration of C2C12 cells. Cell Cycle, 19, 2906–2917.
Zhang W, Wang S Y, Deng S Y, Gao L, Yang L W, Liu X N, Shi G Q. 2018. MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting myostatin gene. Journal of Genetics, 97, 1107–1117.
Zhu Q L, Zhan D M, Chong Y K, Ding L, Yang Y G. 2019. MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3. European Review for Medical Pharmacological Sciences, 23, 8806–8812.
Zhuang S, Zhang Q, Zhuang T, Evans S M, Liang X, Sun Y. 2013. Expression of Isl1 during mouse development. Gene Expression Patterns, 13, 407–412.

[1] Shuqi Qin, Chaocheng Li, Haiyan Lu, Yulong Feng, Tao Guo, Yusong Han, Yongsheng Zhang, Zhonglin Tang.

Biology of Hippo signaling pathway: Skeletal muscle development and beyond [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1825-1838.

[2] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[3] FENG Xi-kang, XIE Chun-di, LI Yong-yao, WANG Zi-shuai, BAI Li-jing. SCSMRD: A database for single-cell skeletal muscle regeneration[J]. >Journal of Integrative Agriculture, 2023, 22(3): 864-871.
[4] ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui. Identification of transition factors in myotube formation from proteome and transcriptome analyses[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3135-3147.
[5] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[6] LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle[J]. >Journal of Integrative Agriculture, 2021, 20(1): 201-211.
[7] LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong . Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus[J]. >Journal of Integrative Agriculture, 2021, 20(1): 212-226.
[8] ZHANG Yong-sheng, LU Dan, LIU Yu-wen, YI Guo-qiang, TANG Zhong-lin . The untold story between enhancers and skeletal muscle development[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2137-2149.
[9] Hong Quyen Dang, XU Gu-li, HOU Lian-jie, XU Jian, HONG Guang-liang, Chingyuan Hu, WANG Chong. MicroRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle[J]. >Journal of Integrative Agriculture, 2020, 19(1): 225-233.
[10] MA Yan-jiao, YANG Ya-lan, SUN Wei, ZHOU Rong, LI Kui, TANG Zhong-lin. SFRP2 affects prenatal muscle development and is regulated by microRNA-1/206 in pigs[J]. >Journal of Integrative Agriculture, 2016, 15(1): 153-161.
[11] SHAN Yan-ju, XU Wen-juan, SHU Jing-ting, ZHANG Ming, SONG Wei-tao, TAO Zhi-yun, ZHU Chunhong, LI Hui-fang. Differentiation of expression profiles of two calcineurin subunit genes in chicken skeletal muscles during early postnatal growth depending on anatomical location of muscles and breed[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1085-1094.
[12] YANG Ya-lan, LI Yan, LIANG Ru-yi, ZHOU Rong, AO Hong, MU Yu-lian, YANG Shu-lin, LI Kui , TANG Zhong-lin. Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1331-1339.
No Suggested Reading articles found!