Adetula A
A, Fan X, Zhang Y, Yao Y, Yan J, Chen M, Tang Y, Liu Y, Yi G, Li K, Tang Z.
2021. Landscape of tissue-specific RNA Editome provides insight into
co-regulated and altered gene expression in pigs (Sus-scrofa). RNA Biology, 18, 439–450.
Aqeilan R
I. 2013. Hippo signaling: To die or not to die. Cell Death and Differentiation, 20, 1287–1288.
Bao G,
Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y, Li S. 2022.
Characterization of the circRNA-miRNA-mRNA network to reveal the potential
functional ceRNAs associated with dynamic changes in the meat quality of the
longissimus thoracis muscle in Tibetan sheep at different growth stages. Frontiers in Veterinary Science, 9, 803758.
Benhaddou
A, Keime C, Ye T, Morlon A, Michel I, Jost B, Mengus G, Davidson I. 2012.
Transcription factor TEAD4 regulates expression of myogenin and the unfolded
protein response genes during C2C12 cell differentiation. Cell Death and Differentiation, 19, 220–231.
Biressi S,
Molinaro M, Cossu G. 2007. Cellular heterogeneity during vertebrate skeletal
muscle development. Developmental Biology, 308, 281–293.
Carson J
A, Schwartz R J, Booth F W. 1996. SRF and TEF-1 control of chicken skeletal
alpha-actin gene during slow-muscle hypertrophy. American Journal of Physiology, 270, C1624–C1633.
Carson J
A, Yan Z, Booth F W, Coleman M E, Schwartz R J, Stump C S. 1995. Regulation of
skeletal alpha-actin promoter in young chickens during hypertrophy caused by
stretch overload. American Journal of Physiology, 268,
C918–C924.
Chan S W,
Lim C J, Guo F, Tan I, Leung T, Hong W. 2013. Actin-binding and cell
proliferation activities of angiomotin family members are regulated by Hippo
pathway-mediated phosphorylation. The Journal of Biological Chemistry, 288, 37296–37307.
Chen H H,
Maeda T, Mullett S J, Stewart A F. 2004. Transcription cofactor Vgl-2 is
required for skeletal muscle differentiation. Genesis, 39,
273–279.
Duan X, An
B, Du L, Chang T, Liang M, Yang B G, Xu L, Zhang L, Li J, E G, Gao H. 2021.
Genome-wide association analysis of growth curve parameters in Chinese
Simmental beef cattle. Animals, 11, 192.
Dumont N
A, Wang Y X, von Maltzahn J, Pasut A, Bentzinger C F, Brun C E, Rudnicki M A.
2015. Dystrophin expression in muscle stem cells regulates their polarity and
asymmetric division. Nature Medicine, 21, 1455–1463.
Eliazer S,
Muncie J M, Christensen J, Sun X, D’Urso R S, Weaver V M, Brack A S. 2019. Wnt4
from the niche controls the mechano-properties and quiescent state of muscle
stem cells. Cell Stem Cell, 25, 654–665.
Fallah S,
Beaulieu J F. 2020. The Hippo pathway effector YAP1 regulates intestinal
epithelial cell differentiation. Cells, 9, 1895.
Fan F, He Z,
Kong L L, Chen Q, Yuan Q, Zhang S, Ye J, Liu H, Sun X, Geng J, Yuan L, Hong L,
Xiao C, Zhang W, Sun X, Li Y, Wang P, Huang L, Wu X, Ji Z, et al. 2016. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair
and regeneration. Science Translational Medicine, 8,
352ra108.
Figeac N,
Mohamed A D, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, Missiaglia E,
Collie-Duguid E, De Mello V, Pobbati A V, Pruller J, Jaka O, Harridge S, Hong
W, Shipley J, Vargesson N, Zammit P S, Wackerhage H. 2019. VGLL3 operates via
TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. Journal of Cell Science, 132, jcs225946.
Fu Y, Liu
H, Dou J, Wang Y, Liao Y, Huang X, Tang Z, Xu J, Yin D, Zhu S, Liu Y, Shen X,
Liu H, Liu J, Yang X, Zhang Y, Xiang, Y, Li J, Zheng Z, Zhao Y, et al. 2023. IAnimal: a cross-species omics knowledgebase for animals. Nucleic Acids Research, 51, D1312–D1324.
Gan W, Dai
X, Dai X, Xie J, Yin S, Zhu J, Wang C, Liu Y, Guo J, Wang M, Liu J, Hu J,
Quinton R J, Ganem N J, Liu P, Asara J M, Pandolfi P P, Yang Y, He Z, Gao G, et al. 2020. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1
pathways in growth control. Nature Cell Biology, 22,
246–256.
García-Gutiérrez
L, Fallahi E, Aboud N, Quinn N, Matallanas D. 2022. Interaction of LATS1 with
SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death & Disease, 13, 692.
Giger J M,
Haddad F, Qin A X, Baldwin K M. 2002. Functional overload increases beta-MHC
promoter activity in rodent fast muscle via the proximal MCAT (betae3)
site. American Journal of Physiology Cell Physiology, 282, C518–C527.
Gnimassou
O, Francaux M, Deldicque L. 2017. Hippo pathway and skeletal muscle mass
regulation in mammals: A controversial relationship. Frontiers in Physiology, 8, 190.
Gomes G,
Bagri K M, de Andrade Rosa I, Jurberg A D, Mermelstein C, Costa M L. 2022.
Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism
during chick in vitro myogenesis. Journal of Muscle Research and Cell Motility, 43, 73–86.
Goodman C
A, Dietz J M, Jacobs B L, McNally R M, You J S, Hornberger T A. 2015.
Yes-associated protein is upregulated by mechanical overload and is sufficient
to induce skeletal muscle hypertrophy. FEBS Letters, 589,
1491–1497.
Gros J,
Manceau M, Thomé V, Marcelle C. 2005. A common somitic origin for embryonic
muscle progenitors and satellite cells. Nature, 435, 954-958.
Günay K A,
Silver J S, Chang T L, Bednarski O J, Bannister K L, Rogowski C J, Olwin B B,
Anseth K S. 2021. Myoblast mechanotransduction and myotube morphology is
dependent on BAG3 regulation of YAP and TAZ. Biomaterials, 277,
121097.
He M,
Zhang W, Wang S, Ge L, Cao X, Wang S, Yuan Z, Lv X, Getachew T, Mwacharo J M,
Haile A, Sun W. 2022. Effects of YAP1 on proliferation and differentiation of
Hu sheep skeletal muscle satellite cells in vitro. Animal Biotechnology, 2022, 1–10.
Heallen T,
Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson R L, Martin J F. 2011.
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation
and heart size. Science, 332, 458–461.
Hernández-Montiel
W, Martínez-Núñez MA, Ramón-Ugalde J P, Román-Ponce S I, Calderón-Chagoya R,
Zamora-Bustillos R. 2020. Genome-wide association study reveals candidate genes
for litter size traits in Pelibuey sheep. Animals, 10, 434.
Honda M,
Hidaka K, Fukada S I, Sugawa R, Shirai M, Ikawa M, Morisaki T. 2017.
Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Scientific Reports, 7, 7168.
Huang J H,
Duan H, Wang S, Wang Y Y, Lv C X. 2021. Upregulated microRNA let-7a accelerates
apoptosis and inhibits proliferation in uterine junctional zone smooth muscle
cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis. Reproductive Biology and Endocrinology, 19, 81.
Huey K A,
Haddad F, Qin A X, Baldwin K M. 2003. Transcriptional regulation of the type I
myosin heavy chain gene in denervated rat soleus. American Journal of Physiology Cell Physiology, 284,
C738–C748.
Huraskin
D, Eiber N, Reichel M, Zidek L M, Kravic B, Bernkopf D, von Maltzahn J, Behrens
J, Hashemolhosseini S. 2016. Wnt/β-catenin signaling via Axin2 is required for
myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle
fibers. Development, 143, 3128–3142.
Jorgensen
A O. 1998. Polarity and development of the cell surface in skeletal muscle. Advances in Molecular and Cell Biology, 26,
157–199.
Joshi S,
Davidson G, Le Gras S, Watanabe S, Braun T, Mengus G, Davidson I. 2017. TEAD
transcription factors are required for normal primary myoblast differentiation in
vitro and muscle regeneration in vivo. PLoS Genetics, 13,
e1006600.
Judson R
N, Gray S R, Walker C, Carroll A M, Itzstein C, Lionikas A, Zammit P S, De Bari
C, Wackerhage H. 2013. Constitutive expression of Yes-associated protein (Yap)
in adult skeletal muscle fibres induces muscle atrophy and myopathy. PLoS ONE, 8, e59622.
Judson R
N, Tremblay A M, Knopp P, White R B, Urcia R, De Bari C, Zammit P S, Camargo F
D, Wackerhage H. 2012. The Hippo pathway member Yap plays a key role in
influencing fate decisions in muscle satellite cells. Journal of Cell Science, 125, 6009–6019.
Justice R
W, Zilian O, Woods D F, Noll M, Bryant P J. 1995. The Drosophila tumor
suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and
is required for the control of cell shape and proliferation. Genes & Development, 9, 534–546.
Kaya-Çopur
A, Marchiano F, Hein M Y, Alpern D, Russeil J, Luis N M, Mann M, Deplancke B,
Habermann B H, Schnorrer F. 2021. The Hippo pathway controls myofibril assembly
and muscle fiber growth by regulating sarcomeric gene expression. eLife, 10, e63726.
Keder A,
Rives-Quinto N, Aerne B L, Franco M, Tapon N, Carmena A. 2015. The hippo
pathway core cassette regulates asymmetric cell division. Current Biology, 25, 2739–2750.
Khan R, Li
A, Raza S H A. 2023. Editorial: Genetic regulation of meat quality traits in
livestock species. Frontiers in Genetics, 13,
1092562.
Kimura T
E, Duggirala A, Smith M C, White S, Sala-Newby G B, Newby A C, Bond M. 2016.
The Hippo pathway mediates inhibition of vascular smooth muscle cell
proliferation by cAMP. Journal of Molecular and Cellular Cardiology, 90, 1–10.
Kulaberoglu
Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, Mavis M, Hoa L, Sharif A,
Lujan C, Smith E, Bjedov I, Tapon N, Wu G, Hergovich A. 2017. Stable MOB1
interaction with Hippo/MST is not essential for development and tissue growth
control. Nature Communications, 8, 695.
Kundu S,
Nandhu M S, Longo S L, Longo J A, Rai S, Chin L S, Richardson T E, Viapiano M
S. 2022. The scaffolding protein DLG5 promotes glioblastoma growth by
controlling Sonic Hedgehog signaling in tumor stem cells. Neuro-Oncology, 24, 1230–1242.
Kwan J,
Sczaniecka A, Heidary Arash E, Nguyen L, Chen C C, Ratkovic S, Klezovitch O,
Attisano L, McNeill H, Emili A, Vasioukhin V. 2016. DLG5 connects cell polarity
and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes & Development, 30, 2696–2709.
Lee K P,
Lee J H, Kim T S, Kim T H, Park H D, Byun J S, Kim M C, Jeong W I, Calvisi D F,
Kim J M, Lim D S. 2010. The Hippo-Salvador pathway restrains hepatic oval cell
proliferation, liver size, and liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 8248–8253.
Li J,
Xiang Y, Zhang L, Qi X, Zheng Z, Zhou P, Tang Z, Jin Y, Zhao Q, Fu Y, Zhao Y,
Li X, Fu L, Zhao S. 2022. Enhancer-promoter interaction maps provide insights
into skeletal muscle-related traits in pig genome. BMC Biology, 20,
136.
Limyati Y,
Sanjaya A, Lucretia T, Gunadi J W, Biben V, Jasaputra D K, Lesmana R. 2022.
Potential role of exercise in regulating YAP and TAZ during cardiomyocytes
aging. Current Cardiology Reviews, 18,
e040422203084.
Lin C W,
Chang Y L, Chang Y C, Lin J C, Chen C C, Pan S H, Wu C T, Chen H Y, Yang S C,
Hong T M, Yang P C. 2013. MicroRNA-135b promotes lung cancer metastasis by
regulating multiple targets in the Hippo pathway and LZTS1. Nature Communications, 4, 1877.
Li Q, Sun
Y, Jarugumilli G K, Liu S, Dang K, Cotton J L, Xiol J, Chan P Y, DeRan M, Ma L,
Li R, Zhu L J, Li J H, Leiter A B, Ip Y T, Camargo F D, Luo X, Johnson R L, Wu
X, Mao J. 2020. Lats1/2 sustain intestinal stem cells and wnt activation
through TEAD-dependent and independent transcription. Cell Stem Cell, 26,
675-692.
Liu Q, Pan
S, Liu S, Zhang S, Willerson J T, Martin J F, Dixon R. 2021. Suppressing Hippo
signaling in the stem cell niche promotes skeletal muscle regeneration. Stem Cells, 39, 737–749.
Liu S, Gao
Y, Canela-Xandri O, Wang S, Yu Y, Cai W, Li B, Xiang R, Chamberlain A J,
Pairo-Castineira E, D’Mellow K, Rawlik K, Xia C, Yao Y, Navarro P, Rocha D, Li
X, Yan Z, Li C, Rosen B D, et al. 2022. A multi-tissue atlas of
regulatory variants in cattle. Nature Genetics, 54,
1438–1447.
Ma S, Tang
T, Probst G, Konradi A, Jin C, Li F, Gutkind J S, Fu X D, Guan K L. 2022.
Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo
pathway as therapeutic target for ER+ breast cancer. Nature Communications, 13, 1061.
Ma X, Wang
H, Ji J, Xu W, Sun Y, Li W, Zhang X, Chen J, Xue L. 2017. Hippo signaling
promotes JNK-dependent cell migration. Proceedings of the National Academy of Sciences of the United States of America, 114, 1934–1939.
Mahoney W
M, Jr Hong J H, Yaffe M B, Farrance I K. 2005. The transcriptional co-activator
TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1)
family members. The Biochemical Journal, 388,
217–225.
Manderfield
L J, Aghajanian H, Engleka K A, Lim L Y, Liu F, Jain R, Li L, Olson E N,
Epstein J A. 2015. Hippo signaling is required for Notch-dependent smooth
muscle differentiation of neural crest. Development (Cambridge,
England), 142, 2962–2971.
Martin J.
2020. Hippo-signaling in heart development and regeneration. FASEB Journal, 34, 1.
McCarthy J
J, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui A B, Srikuea R, Lawson B
A, Grimes B, Keller C, Van Zant G, Campbell K S, Esser K A, Dupont-Versteegden
E E, Peterson C A. 2011. Effective fiber hypertrophy in satellite cell-depleted
skeletal muscle. Development, 138, 3657–3666.
De Mello V C. 2016. The role of the Hippo co-activators Yap, Taz and Vgll in regulating muscle cell fate and embryonic development.
PhD thesis, University of Aberdeen, England.
Meng C,
Tian G, Xu C, Li X, Zhang Y, Wang Y, Qin J, Fok E, Hinton B T, Mak K K, Shum W
W, Chan W Y, Xia Y. 2020. Hippo kinases MST1 and MST2 control the
differentiation of the epididymal initial segment via the MEK-ERK pathway. Cell Death and Differentiation, 27, 2797–2809.
Miranda M
Z, Bialik J F, Speight P, Dan Q, Yeung T, Szászi K, Pedersen S F, Kapus A.
2017. TGF-β1 regulates the expression and transcriptional activity of TAZ
protein via a Smad3-independent, myocardin-related transcription
factor-mediated mechanism. The Journal of Biological Chemistry, 292, 14902–14920.
Mo J S,
Meng Z, Kim Y C, Park H W, Hansen C G, Kim S, Lim D S, Guan K L. 2015. Cellular
energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 17, 500–510.
Monroe T
O, Hill M C, Morikawa Y, Leach J P, Heallen T, Cao S, Krijger P, de Laat W,
Wehrens X, Rodney G G, Martin J F. 2019. YAP partially reprograms chromatin
accessibility to directly induce adult cardiogenesis in vivo. Developmental Cell, 48, 765–779.
Morikawa
Y, Heallen T, Leach J, Xiao Y, Martin J F. 2017. Dystrophin-glycoprotein
complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature, 547,
227–231.
Morikawa
Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson J T,
Martin J F. 2015. Actin cytoskeletal remodeling with protrusion formation is
essential for heart regeneration in Hippo-deficient mice. Science Signaling, 8, ra41.
Nezhad F
Y, Riermeier A, Schönfelder M, Becker L, de Angelis M H, Wackerhage H. 2022.
Skeletal muscle phenotyping of Hippo gene-mutated mice reveals that Lats1
deletion increases the percentage of type I muscle fibers. Transgenic Research, 31, 227–237.
Nguyen M
T, Won Y H, Kwon T W, Lee W. 2022. Twinfilin-1 is an essential regulator of
myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochemical and Biophysical Research Communications, 599,
17–23.
Olouyomi
G, Marc F, Louise D. 2017. Hippo pathway and skeletal muscle mass regulation in
mammals: A controversial relationship. Frontiers in Physiology, 8, 190.
Pan W,
Wang Q, Zhang Y, Zhang N, Qin J, Li W, Wang J, Wu F, Cao L, Xu G. 2016.
Verteporfin can reverse the paclitaxel resistance induced by YAP
over-expression in HCT-8/T cells without photoactivation through inhibiting YAP
expression. Cellular Physiology and Biochemistry (International Journal of Experimental Cellular Physiology, Biochemistry, and
Pharmacology), 39, 481–490.
Paul S,
Xie S, Yao X, Dey A. 2022. Transcriptional regulation of the Hippo pathway:
Current understanding and insights from single-cell technologies. Cells, 11, 2225.
Piersma B,
de Rond S, Werker P M, Boo S, Hinz B, van Beuge M M, Bank R A. 2015. YAP1 is a
driver of myofibroblast differentiation in normal and diseased fibroblasts. The American Journal of Pathology, 185,
3326–3337.
Piórkowska
K, Żukowski K, Ropka-Molik K, Tyra M, Gurgul A. 2018. A comprehensive
transcriptome analysis of skeletal muscles in two Polish pig breeds differing
in fat and meat quality traits. Genetics and Molecular Biology, 41, 125–136.
Pobbati A
V, Chan S W, Lee I, Song H, Hong W. 2012. Structural and functional similarity
between the Vgll1-TEAD and the YAP-TEAD complexes. Structure, 20,
1135–1140
Pulkkinen
H H, Kiema M, Lappalainen J P, Toropainen A, Beter M, Tirronen A, Holappa L,
Niskanen H, Kaikkonen M U, Ylä-Herttuala S, Laakkonen J P. 2021. BMP6/TAZ-Hippo
signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis, 24, 129–144.
Qiu H,
Wang F, Liu C, Xu X, Liu B. 2011. TEAD1-dependent expression of the Foxo3a gene in mouse skeletal muscle. BMC Molecular Biology, 12,
1.
Qu S, Liao
Q, Yu C, Chen Y, Luo H, Xia X, He D, Xu Z, Jose P A, Li Z, Wang W E, Lyu Q R,
Zeng C. 2002. LKB1 suppression promotes cardiomyocyte regeneration via LKB1-AMPK-YAP
axis. Bosnian Journal of Basic Medical Sciences, 22, 772–783.
Ribas R,
Moncaut N, Siligan C, Taylor K, Cross J W, Rigby P W, Carvajal J J. 2011.
Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Developmental Biology, 355,
372–380.
Ropka-Molik
K, Bereta A, Żukowski K, Piórkowska K, Gurgul A, Żak G. 2017. Transcriptomic
gene profiling of porcine muscle tissue depending on histological properties. Animal Science Journal, 88, 1178–1188
Dos Santos
M, Backer S, Auradé F, Wong M M, Wurmser M, Pierre R, Langa F, Do Cruzeiro M,
Schmitt A, Concordet J P, Sotiropoulos A, Jeffrey Dilworth F, Noordermeer D,
Relaix F, Sakakibara I, Maire P. 2022. A fast Myosin super enhancer dictates
muscle fiber phenotype through competitive interactions with Myosin genes. Nature Communications, 13, 1039.
Sawada A,
Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. 2008. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell
proliferation and survival. Molecular and Cellular Biology, 28, 3177–3189.
Setiawan
I, Sanjaya A, Lesmana R, Yen P M, Goenawan H. 2021. Hippo pathway effectors YAP
and TAZ and their association with skeletal muscle ageing. Journal of Physiology and Biochemistry, 77, 63–73.
Shao Y, Li
M, Yu Q, Gong M, Wang Y, Yang X, Liu L, Liu D, Tan Z, Zhang Y, Qu Y, Li H, Wang
Y, Jiao L, Zhang Y. 2022. CircRNA CDR1 as promotes cardiomyocyte apoptosis
through activating hippo signaling pathway in diabetic cardiomyopathy. European Journal of Pharmacology, 922, 174915.
Shen J,
Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo
Y. 2021. Comparative transcriptome profile analysis of longissimus dorsi muscle tissues from two goat breeds with different meat production performance using
RNA-Seq. Frontiers in Genetics, 11, 619399.
Sorrentino
G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina
E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G. 2014. Metabolic
control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 16, 357–366.
Stoll M,
Corneliussen B, Costello C M, Waetzig G H, Mellgard B, Koch W A, Rosenstiel P,
Albrecht M, Croucher P J, Seegert D, Nikolaus S, Hampe J, Lengauer T, Pierrou
S, Foelsch U R, Mathew C G, Lagerstrom-Fermer M, Schreiber S. 2004. Genetic
variation in DLG5 is associated with inflammatory bowel disease. Nature
Genetics, 36, 476-480.
Sun C, De
Mello V, Mohamed A, Ortuste Quiroga H P, Garcia-Munoz A, Al Bloshi A, Tremblay
A M, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage
H, Zammit P S. 2017. Common and distinctive functions of the Hippo effectors
Taz and Yap in skeletal muscle stem cell function. Stem Cells, 35,
1958–1972.
Schienda
J, Engleka K A, Jun S, Hansen M S, Epstein J A, Tabin C J, Kunkel L M, Kardon
G. 2006. Somitic origin of limb muscle satellite and side population cells. Proceedings
of the National Academy of Sciences of the United States of America, 103,
945-950.
Sun X, Ren
Z, Cun Y, Zhao C, Yuan P. 2020. Hippo-YAP signaling controls lineage
differentiation of mouse embryonic stem cells through modulating the formation
of super-enhancers. Nucleic Acids Research, 48,
7182–7196.
Tan X, He
Y, Qin Y, Yan Z, Chen J, Zhao R, Zhou S, Irwin D M, Li B, Zhang S. 2022.
Comparative analysis of differentially abundant proteins between high and low
intramuscular fat content groups in donkeys. Frontiers in Veterinary Science, 9, 951168.
Tripathi
S, Miyake T, Kelebeev J, McDermott J C. 2022. TAZ exhibits phase separation
properties and interacts with Smad7 and β-catenin to repress skeletal
myogenesis. Journal of Cell Science, 135,
jcs259097.
Tsika R W,
Schramm C, Simmer G, Fitzsimons D P, Moss R L, Ji J. 2008. Over-expression of
TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle
contractile phenotype. Journal of Biological Chemistry, 283, 36154–36167.
Varelas X,
Miller B W, Sopko R, Song S, Gregorieff A, Fellouse F A, Sakuma R, Pawson T,
Hunziker W, McNeill H, Wrana J L, Attisano L. 2020. The Hippo pathway regulates
Wnt/beta-catenin signaling. Developmental Cell, 18,
579–591.
Vassilev
A, Kaneko K J, Shu H, Zhao Y, DePamphilis M L. 2001. TEAD/TEF transcription
factors utilize the activation domain of YAP65, a Src/Yes-associated protein
localized in the cytoplasm. Genes & Development, 15,
1229–1241.
Vita G L,
Polito F, Oteri R, Arrigo R, Ciranni A M, Musumeci O, Messina S, Rodolico C, Di
Giorgio R M, Vita G, Aguennouz M. 2013. Hippo signaling pathway is altered in
Duchenne muscular dystrophy. PLoS ONE, 13, e0205514.
Wang L,
Choi K, Su T, Li B, Wu X, Zhang R, Driskill J H, Li H, Lei H, Guo P, Chen E H,
Zheng Y, Pan D. 2022. Multiphase coalescence mediates Hippo pathway activation. Cell, 185, 4376–4393.
Wang L, Yu
P, Wang J, Xu G, Wang T, Feng J, Bei Y, Xu J, Wang H, Das S, Xiao J. 2022.
Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N6-methyladenosine-modified Yap expression. Research, 2022, 9825916.
Wang M,
Zhao X, Qiu R, Gong Z, Huang F, Yu W, Shen B, Sha X, Dong H, Huang J, Wang L,
Zhu W, Xu W. 2021. Lymph node metastasis-derived gastric cancer cells educate
bone marrow-derived mesenchymal stem cells via YAP signaling activation by
exosomal Wnt5a. Oncogene, 40, 2296–2308.
Wang Q,
Shi W, Zhang Q, Feng W, Wang J, Zhai C, Yan X, Li M. 2020. Inhibition of Siah2
ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial
remodeling through inactivation of YAP. Life Sciences, 242,
117159.
Watt K I,
Goodman C A, Hornberger T A, Gregorevic P. 2018. The Hippo signaling pathway in
the regulation of skeletal muscle mass and function. Exercise and Sport Sciences Reviews,46, 92–96.
Watt K I,
Judson R, Medlow P, Reid K, Kurth T B, Burniston J G, Ratkevicius A, De Bari C,
Wackerhage H. 2010. Yap is a novel regulator of C2C12 myogenesis. Biochemical and Biophysical Research Communications, 393,
619–624.
Watt K I,
Turner B J, Hagg A, Zhang X, Davey J R, Qian H, Beyer C, Winbanks C E, Harvey K
F, Gregorevic P. 2015. The Hippo pathway effector YAP is a critical regulator
of skeletal muscle fibre size. Nature Communications, 6,
6048.
Wei B, Dui
W, Liu D, Xing Y, Yuan Z, Ji G. 2013. MST1, a key player, in enhancing fast
skeletal muscle atrophy. BMC Biology, 11, 12.
Wu D M,
Wang S, Wen X, Han X R, Wang Y J, Shen M, Fan S H, Zhang Z F, Shan Q, Li M Q,
Hu B, Lu J, Chen G Q, Zheng Y L. 2018. LncRNA SNHG15 acts as a ceRNA to
regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary
thyroid carcinoma. Cell Death & Disease, 9,
947.
Xin M, Kim
Y, Sutherland L B, Qi X, McAnally J, Schwartz R J, Richardson J A, Bassel-Duby
R, Olson E N. 2011. Regulation of insulin-like growth factor signaling by Yap
governs cardiomyocyte proliferation and embryonic heart size. Science Signaling, 4, ra70.
Xu T, Wang
W, Zhang S, Stewart R A, Yu W. 1995. Identifying tumor suppressors in genetic
mosaics: The Drosophila lats gene encodes a putative protein kinase. Development, 121, 1053–1063.
Yang Z,
Nakagawa K, Sarkar A, Maruyama J, Iwasa, H, Bao Y, Ishigami-Yuasa M, Ito S,
Kagechika H, Hata S, Nishina H, Abe S, Kitagawa M, Hata Y. 2014. Screening with
a novel cell-based assay for TAZ activators identifies a compound that enhances
myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury
model. Molecular and Cellular Biology, 34,
1607–1621.
Yao Y, Liu
Z, Huang S, Huang C, Cao Y, Li L, Guo H, Liu F, Huang S, Liao Q, He X, Chen J,
Li J, Xiang X, Xiong, J, Deng J. 2022. The E3 ubiquitin ligase, FBXW5, promotes
the migration and invasion of gastric cancer through the dysregulation of the
Hippo pathway. Cell Death Discovery, 8, 79.
Yatsenko A
S, Kucherenko M M, Xie Y, Aweida D, Urlaub H, Scheibe R J, Cohen S, Shcherbata
H R. 2020. Profiling of the muscle-specific dystroglycan interactome reveals
the role of Hippo signaling in muscular dystrophy and age-dependent muscle
atrophy. BMC Medicine, 18, 8.
Ye S,
Lawlor M A, Rivera-Reyes A, Egolf S, Chor S, Pak K, Ciotti G E, Lee A C, Marino
G E, Shah J, Niedzwicki D, Weber K, Park P, Alam M Z, Grazioli A, Haldar M, Xu
M, Perry J A, Qi J, Eisinger-Mathason T. 2018. YAP1-mediated suppression of
USP31 enhances NFκB activity to promote sarcomagenesis. Cancer Research, 78, 2705–2720.
Yoshida T.
2008. MCAT elements and the TEF-1 family of transcription factors in muscle
development and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 8–17.
Yu F X,
Guan K L. 2013. The Hippo pathway: Regulators and regulations. Genes & Development, 27, 355–371.
Yu F X,
Zhao B, Panupinthu N, Jewell J L, Lian I, Wang L H, Zhao J, Yuan H, Tumaneng K,
Li H, Fu X D, Mills G B, Guan K L. 2012. Regulation of the Hippo-YAP pathway by
G-protein-coupled receptor signaling. Cell, 150, 780–791
Zhang J,
Raza S, Wei D, Yaping S, Chao J, Jin W, Almohaimeed H M, A Batarfi M, Assiri R,
Aggad W S, Ghalib S H, Ageeli A A. 2022. Roles of MEF2A and MyoG in the
transcriptional regulation of bovine LATS2 gene. Research in Veterinary Science, 152, 417–426.
Zhang L,
Noguchi Y T, Nakayama H, Kaji T, Tsujikawa K, Ikemoto-Uezumi M, Uezumi A, Okada
Y, Doi T, Watanabe S, Braun T, Fujio Y, Fukada S I. 2019. The CalcR-PKA-Yap1
axis is critical for maintaining quiescence in muscle stem cells. Cell Reports, 29, 2154–2163.e5.
Zhang L N,
Tian H, Zhou X L, Tian S C, Zhang X H, Wu T J. 2018. Upregulation of
microRNA-351 exerts protective effects during sepsis by ameliorating skeletal
muscle wasting through the Tead-4-mediated blockade of the Hippo signaling
pathway. FASEB Journal, 32, 6934-6947.
Zhang S,
Zhang Y, Chen C, Hu Q, Fu Y, Xu L, Wang C, Liu Y. 2022. Identification of
robust and key differentially expressed genes during C2C12 cell myogenesis
based on multiomics data. International Journal of Molecular Sciences, 23, 6002.
Zhang Y,
Yao Y, Wang Z, Lu D, Zhang Y, Adetula A A, Liu S, Zhu M, Yang Y, Fan X, Chen M,
Tang Y, Chen Y, Liu Y, Yi G, Tang Z. 2020. MiR-743a-5p regulates
differentiation of myoblast by targeting Mob1b in skeletal muscle
development and regeneration. Genes & Diseases, 9,
1038–1048.
Zhao B, Li
L, Lei Q, Guan K L. 2010. The Hippo-YAP pathway in organ size control and
tumorigenesis: An updated version. Genes & Development, 24, 862–874.
Zhao B,
Tumaneng K, Guan K L. 2011. The Hippo pathway in organ size control, tissue
regeneration and stem cell self-renewal. Nature Cell Biology, 13, 877–883.
Zhao K,
Shen C, Lu Y, Huang Z, Li L, Rand C D, Pan J, Sun X D, Tan Z, Wang H, Xing G,
Cao Y, Hu G, Zhou J, Xiong W C, Mei L. 2017. Muscle Yap is a regulator of
neuromuscular junction formation and regeneration. The Journal of Neuroscience, 37, 3465–3477.
Zhao P,
Caretti G, Mitchell S, McKeehan W L, Boskey A L, Pachman L M, Sartorelli V,
Hoffman E P. 2006. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. Journal of Biological Chemistry, 281, 429–438.
Zhou H,
Xiang Y, Hu M, Xu Y, Hou Y, Qi X, Fu L, Luan Y, Wang Z, Li X, Zhao Y, Zhao S.
2020. Chromatin accessibility is associated with the changed expression of
miRNAs that target members of the Hippo pathway during myoblast
differentiation. Cell Death & Disease, 11,
148.
Zhu H, Pan
Y, Jiang Y, Li J, Zhang Y, Zhang S. 2019. Activation of the Hippo/TAZ pathway
is required for menstrual stem cells to suppress myofibroblast and inhibit
transforming growth factor β signaling in human endometrial stromal cells. Human Reproduction (Oxford, England), 34, 635–645.
|