Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1825-1838    DOI: 10.1016/j.jia.2023.09.031
Review Advanced Online Publication | Current Issue | Archive | Adv Search |

Biology of Hippo signaling pathway: Skeletal muscle development and beyond

Shuqi Qin1*, Chaocheng Li1*, Haiyan Lu2, Yulong Feng1, Tao Guo1, Yusong Han1, Yongsheng Zhang1#, Zhonglin Tang3, 4#

1 Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China

2 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China

3 Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China

4 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目前全球对农场动物及其肉类产品猪肉、鸡肉和其他畜禽肉类的需求正在稳步提升。随着生命科学研究的深入和生物技术的快速发展,开发先进的分子育种标记,高效地提升动物的产肉性状是一个很好的契机。Hippo是一个关键的信号通路,因其在器官大小调控中起着至关重要的作用。近年来,随着对Hippo信号通路研究的增加,通过基因组学、转录组学、蛋白质组学和代谢组学等多组学技术的联合应用,将有助于推进Hippo信号通路参与骨骼肌发育的深入研究。Hippo信号通路在诸多生物学事件中起着关键作用,主要包括:细胞分裂、细胞迁移、细胞增殖、细胞分化、细胞凋亡,以及细胞黏连、细胞极性和细胞面对机械过载中的稳态维持等。它在骨骼肌发育中的影响,对畜牧业的生产效益提升有重要的研究价值。在此,我们追溯了Hippo通路的起源,全面整理了该通路目前发现的所有功能性因子,深入解析了其发挥功能的分子机理,并从全新视角依据其主效结构域和作用模式进行归纳分类,系统探讨其在整个骨骼肌发育中的调控作用。尤其重点针Hippo信号通路在胚胎干细胞发育、肌肉卫星细胞命运决定、肌肉发生、骨骼肌产肉量和器官大小调节、肌肉过度肥大和萎缩、肌纤维形成及其不同类型之间的转化,以及心肌细胞增殖和再生中的作用进行了有条理的总结和综合分析。本文对Hippo信号通路的总结和展望,为进一步高效率地提升产肉量和肌肉沉积,开发畜禽的分子育种新技术提供思路,将有助于动物分子育种的发展。



Abstract  

Global demand for farm animals and their meat products i.e., pork, chicken and other livestock meat, is steadily incresing. With the ongoing life science research and the rapid development of biotechnology, it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.  Hippo is an important study subject because of its crucial role in the regulation of organ size.  In recent years, with the increase of research on Hippo signaling pathway, the integrative application of multi-omics technologies such as genomics, transcriptomics, proteomics, and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.  The Hippo signaling pathway plays a key role in many biological events, including cell division, cell migration, cell proliferation, cell differentiation, cell apoptosis, as well as cell adhesion, cell polarity, homeostasis, maintenance of the face of mechanical overload, etc.  Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.  In this study, we traced the origin of the Hippo pathway, comprehensively sorted out all the functional factors found in the pathway, deeply analyzed the molecular mechanism of its function, and classified it from a novel perspective based on its main functional domain and mode of action.  Our aim is to systematically explore its regulatory role throughout skeletal muscle development.  We specifically focus on the Hippo signaling pathway in embryonic stem cell development, muscle satellite cell fate determination, myogenesis, skeletal muscle meat production and organ size regulation, muscle hypertrophy and atrophy, muscle fiber formation and its transformation between different types, and cardiomyocytes.  The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.  The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry, which will be helpful for the development of animal molecular breeding.

Keywords:  Hippo       skeletal muscle        organ size        myogenesis        C2C12        livestock animals   
Received: 28 November 2022   Accepted: 16 July 2023
Fund: This work was supported by the National Natural Science Foundation of China (31830090), the High-level Talent Project of Shihezi University, China (2022ZK022) and the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (CAAS-ZDRW202006).
About author:  Shuqi Qin, E-mail: qin_shu_qi@163.com; Chaocheng Li, E-mail: m18299374567@163.com; #Correspondence Yongsheng Zhang, E-mail: zhangyongsheng@shzu.edu.cn; Zhonglin Tang, E-mail: tangzhonglin@caas.cn * These authors contributed equally to this study.

Cite this article: 

Shuqi Qin, Chaocheng Li, Haiyan Lu, Yulong Feng, Tao Guo, Yusong Han, Yongsheng Zhang, Zhonglin Tang. 2024.

Biology of Hippo signaling pathway: Skeletal muscle development and beyond . Journal of Integrative Agriculture, 23(6): 1825-1838.

Adetula A A, Fan X, Zhang Y, Yao Y, Yan J, Chen M, Tang Y, Liu Y, Yi G, Li K, Tang Z. 2021. Landscape of tissue-specific RNA Editome provides insight into co-regulated and altered gene expression in pigs (Sus-scrofa). RNA Biology, 18, 439–450.

Aqeilan R I. 2013. Hippo signaling: To die or not to die. Cell Death and Differentiation, 20, 1287–1288.

Bao G, Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y, Li S. 2022. Characterization of the circRNA-miRNA-mRNA network to reveal the potential functional ceRNAs associated with dynamic changes in the meat quality of the longissimus thoracis muscle in Tibetan sheep at different growth stages. Frontiers in Veterinary Science, 9, 803758.

Benhaddou A, Keime C, Ye T, Morlon A, Michel I, Jost B, Mengus G, Davidson I. 2012. Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation. Cell Death and Differentiation, 19, 220–231.

Biressi S, Molinaro M, Cossu G. 2007. Cellular heterogeneity during vertebrate skeletal muscle development. Developmental Biology, 308, 281–293.

Carson J A, Schwartz R J, Booth F W. 1996. SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. American Journal of Physiology, 270, C1624–C1633.

Carson J A, Yan Z, Booth F W, Coleman M E, Schwartz R J, Stump C S. 1995. Regulation of skeletal alpha-actin promoter in young chickens during hypertrophy caused by stretch overload. American Journal of Physiology, 268, C918–C924.

Chan S W, Lim C J, Guo F, Tan I, Leung T, Hong W. 2013. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. The Journal of Biological Chemistry, 288, 37296–37307.

Chen H H, Maeda T, Mullett S J, Stewart A F. 2004. Transcription cofactor Vgl-2 is required for skeletal muscle differentiation. Genesis, 39, 273–279.

Duan X, An B, Du L, Chang T, Liang M, Yang B G, Xu L, Zhang L, Li J, E G, Gao H. 2021. Genome-wide association analysis of growth curve parameters in Chinese Simmental beef cattle. Animals, 11, 192.

Dumont N A, Wang Y X, von Maltzahn J, Pasut A, Bentzinger C F, Brun C E, Rudnicki M A. 2015. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine, 21, 1455–1463.

Eliazer S, Muncie J M, Christensen J, Sun X, D’Urso R S, Weaver V M, Brack A S. 2019. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell, 25, 654–665.

Fallah S, Beaulieu J F. 2020. The Hippo pathway effector YAP1 regulates intestinal epithelial cell differentiation. Cells, 9, 1895.

Fan F, He Z, Kong L L, Chen Q, Yuan Q, Zhang S, Ye J, Liu H, Sun X, Geng J, Yuan L, Hong L, Xiao C, Zhang W, Sun X, Li Y, Wang P, Huang L, Wu X, Ji Z, et al. 2016. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Science Translational Medicine, 8, 352ra108.

Figeac N, Mohamed A D, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, Missiaglia E, Collie-Duguid E, De Mello V, Pobbati A V, Pruller J, Jaka O, Harridge S, Hong W, Shipley J, Vargesson N, Zammit P S, Wackerhage H. 2019. VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. Journal of Cell Science, 132, jcs225946.

Fu Y, Liu H, Dou J, Wang Y, Liao Y, Huang X, Tang Z, Xu J, Yin D, Zhu S, Liu Y, Shen X, Liu H, Liu J, Yang X, Zhang Y, Xiang, Y, Li J, Zheng Z, Zhao Y, et al. 2023. IAnimal: a cross-species omics knowledgebase for animals. Nucleic Acids Research, 51, D1312–D1324.

Gan W, Dai X, Dai X, Xie J, Yin S, Zhu J, Wang C, Liu Y, Guo J, Wang M, Liu J, Hu J, Quinton R J, Ganem N J, Liu P, Asara J M, Pandolfi P P, Yang Y, He Z, Gao G, et al. 2020. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 22, 246–256.

García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. 2022. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death & Disease, 13, 692.

Giger J M, Haddad F, Qin A X, Baldwin K M. 2002. Functional overload increases beta-MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site. American Journal of Physiology Cell Physiology, 282, C518–C527.

Gnimassou O, Francaux M, Deldicque L. 2017. Hippo pathway and skeletal muscle mass regulation in mammals: A controversial relationship. Frontiers in Physiology, 8, 190.

Gomes G, Bagri K M, de Andrade Rosa I, Jurberg A D, Mermelstein C, Costa M L. 2022. Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism during chick in vitro myogenesis. Journal of Muscle Research and Cell Motility, 43, 73–86.

Goodman C A, Dietz J M, Jacobs B L, McNally R M, You J S, Hornberger T A. 2015. Yes-associated protein is upregulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Letters, 589, 1491–1497.

Gros J, Manceau M, Thomé V, Marcelle C. 2005. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature, 435, 954-958.

Günay K A, Silver J S, Chang T L, Bednarski O J, Bannister K L, Rogowski C J, Olwin B B, Anseth K S. 2021. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials, 277, 121097.

He M, Zhang W, Wang S, Ge L, Cao X, Wang S, Yuan Z, Lv X, Getachew T, Mwacharo J M, Haile A, Sun W. 2022. Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro. Animal Biotechnology, 2022, 1–10.

Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson R L, Martin J F. 2011. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 332, 458–461.

Hernández-Montiel W, Martínez-Núñez MA, Ramón-Ugalde J P, Román-Ponce S I, Calderón-Chagoya R, Zamora-Bustillos R. 2020. Genome-wide association study reveals candidate genes for litter size traits in Pelibuey sheep. Animals, 10, 434.

Honda M, Hidaka K, Fukada S I, Sugawa R, Shirai M, Ikawa M, Morisaki T. 2017. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Scientific Reports, 7, 7168.

Huang J H, Duan H, Wang S, Wang Y Y, Lv C X. 2021. Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis. Reproductive Biology and Endocrinology, 19, 81.

Huey K A, Haddad F, Qin A X, Baldwin K M. 2003. Transcriptional regulation of the type I myosin heavy chain gene in denervated rat soleus. American Journal of Physiology Cell Physiology, 284, C738–C748.

Huraskin D, Eiber N, Reichel M, Zidek L M, Kravic B, Bernkopf D, von Maltzahn J, Behrens J, Hashemolhosseini S. 2016. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers. Development, 143, 3128–3142.

Jorgensen A O. 1998. Polarity and development of the cell surface in skeletal muscle. Advances in Molecular and Cell Biology, 26, 157–199.

Joshi S, Davidson G, Le Gras S, Watanabe S, Braun T, Mengus G, Davidson I. 2017. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLoS Genetics, 13, e1006600.

Judson R N, Gray S R, Walker C, Carroll A M, Itzstein C, Lionikas A, Zammit P S, De Bari C, Wackerhage H. 2013. Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy. PLoS ONE, 8, e59622.

Judson R N, Tremblay A M, Knopp P, White R B, Urcia R, De Bari C, Zammit P S, Camargo F D, Wackerhage H. 2012. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. Journal of Cell Science, 125, 6009–6019.

Justice R W, Zilian O, Woods D F, Noll M, Bryant P J. 1995. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes & Development, 9, 534–546.

Kaya-Çopur A, Marchiano F, Hein M Y, Alpern D, Russeil J, Luis N M, Mann M, Deplancke B, Habermann B H, Schnorrer F. 2021. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife, 10, e63726.

Keder A, Rives-Quinto N, Aerne B L, Franco M, Tapon N, Carmena A. 2015. The hippo pathway core cassette regulates asymmetric cell division. Current Biology, 25, 2739–2750.

Khan R, Li A, Raza S H A. 2023. Editorial: Genetic regulation of meat quality traits in livestock species. Frontiers in Genetics, 13, 1092562.

Kimura T E, Duggirala A, Smith M C, White S, Sala-Newby G B, Newby A C, Bond M. 2016. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. Journal of Molecular and Cellular Cardiology, 90, 1–10.

Kulaberoglu Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, Mavis M, Hoa L, Sharif A, Lujan C, Smith E, Bjedov I, Tapon N, Wu G, Hergovich A. 2017. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nature Communications, 8, 695.

Kundu S, Nandhu M S, Longo S L, Longo J A, Rai S, Chin L S, Richardson T E, Viapiano M S. 2022. The scaffolding protein DLG5 promotes glioblastoma growth by controlling Sonic Hedgehog signaling in tumor stem cells. Neuro-Oncology, 24, 1230–1242.

Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen C C, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V. 2016. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes & Development, 30, 2696–2709.

Lee K P, Lee J H, Kim T S, Kim T H, Park H D, Byun J S, Kim M C, Jeong W I, Calvisi D F, Kim J M, Lim D S. 2010. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 8248–8253.

Li J, Xiang Y, Zhang L, Qi X, Zheng Z, Zhou P, Tang Z, Jin Y, Zhao Q, Fu Y, Zhao Y, Li X, Fu L, Zhao S. 2022. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biology, 20, 136.

Limyati Y, Sanjaya A, Lucretia T, Gunadi J W, Biben V, Jasaputra D K, Lesmana R. 2022. Potential role of exercise in regulating YAP and TAZ during cardiomyocytes aging. Current Cardiology Reviews, 18, e040422203084.

Lin C W, Chang Y L, Chang Y C, Lin J C, Chen C C, Pan S H, Wu C T, Chen H Y, Yang S C, Hong T M, Yang P C. 2013. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nature Communications, 4, 1877.

Li Q, Sun Y, Jarugumilli G K, Liu S, Dang K, Cotton J L, Xiol J, Chan P Y, DeRan M, Ma L, Li R, Zhu L J, Li J H, Leiter A B, Ip Y T, Camargo F D, Luo X, Johnson R L, Wu X, Mao J. 2020. Lats1/2 sustain intestinal stem cells and wnt activation through TEAD-dependent and independent transcription. Cell Stem Cell, 26, 675-692.

Liu Q, Pan S, Liu S, Zhang S, Willerson J T, Martin J F, Dixon R. 2021. Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration. Stem Cells, 39, 737–749.

Liu S, Gao Y, Canela-Xandri O, Wang S, Yu Y, Cai W, Li B, Xiang R, Chamberlain A J, Pairo-Castineira E, D’Mellow K, Rawlik K, Xia C, Yao Y, Navarro P, Rocha D, Li X, Yan Z, Li C, Rosen B D, et al. 2022. A multi-tissue atlas of regulatory variants in cattle. Nature Genetics, 54, 1438–1447.

Ma S, Tang T, Probst G, Konradi A, Jin C, Li F, Gutkind J S, Fu X D, Guan K L. 2022. Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature Communications, 13, 1061.

Ma X, Wang H, Ji J, Xu W, Sun Y, Li W, Zhang X, Chen J, Xue L. 2017. Hippo signaling promotes JNK-dependent cell migration. Proceedings of the National Academy of Sciences of the United States of America, 114, 1934–1939.

Mahoney W M, Jr Hong J H, Yaffe M B, Farrance I K. 2005. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. The Biochemical Journal, 388, 217–225.

Manderfield L J, Aghajanian H, Engleka K A, Lim L Y, Liu F, Jain R, Li L, Olson E N, Epstein J A. 2015. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge, England), 142, 2962–2971.

Martin J. 2020. Hippo-signaling in heart development and regeneration. FASEB Journal, 34, 1.

McCarthy J J, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui A B, Srikuea R, Lawson B A, Grimes B, Keller C, Van Zant G, Campbell K S, Esser K A, Dupont-Versteegden E E, Peterson C A. 2011. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development, 138, 3657–3666.

De Mello V C. 2016. The role of the Hippo co-activators Yap, Taz and Vgll in regulating muscle cell fate and embryonic development. PhD thesis, University of Aberdeen, England.

Meng C, Tian G, Xu C, Li X, Zhang Y, Wang Y, Qin J, Fok E, Hinton B T, Mak K K, Shum W W, Chan W Y, Xia Y. 2020. Hippo kinases MST1 and MST2 control the differentiation of the epididymal initial segment via the MEK-ERK pathway. Cell Death and Differentiation, 27, 2797–2809.

Miranda M Z, Bialik J F, Speight P, Dan Q, Yeung T, Szászi K, Pedersen S F, Kapus A. 2017. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. The Journal of Biological Chemistry, 292, 14902–14920.

Mo J S, Meng Z, Kim Y C, Park H W, Hansen C G, Kim S, Lim D S, Guan K L. 2015. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 17, 500–510.

Monroe T O, Hill M C, Morikawa Y, Leach J P, Heallen T, Cao S, Krijger P, de Laat W, Wehrens X, Rodney G G, Martin J F. 2019. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Developmental Cell, 48, 765–779.

Morikawa Y, Heallen T, Leach J, Xiao Y, Martin J F. 2017. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature, 547, 227–231.

Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson J T, Martin J F. 2015. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Science Signaling, 8, ra41.

Nezhad F Y, Riermeier A, Schönfelder M, Becker L, de Angelis M H, Wackerhage H. 2022. Skeletal muscle phenotyping of Hippo gene-mutated mice reveals that Lats1 deletion increases the percentage of type I muscle fibers. Transgenic Research, 31, 227–237.

Nguyen M T, Won Y H, Kwon T W, Lee W. 2022. Twinfilin-1 is an essential regulator of myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochemical and Biophysical Research Communications, 599, 17–23.

Olouyomi G, Marc F, Louise D. 2017. Hippo pathway and skeletal muscle mass regulation in mammals: A controversial relationship. Frontiers in Physiology, 8, 190.

Pan W, Wang Q, Zhang Y, Zhang N, Qin J, Li W, Wang J, Wu F, Cao L, Xu G. 2016. Verteporfin can reverse the paclitaxel resistance induced by YAP over-expression in HCT-8/T cells without photoactivation through inhibiting YAP expression. Cellular Physiology and Biochemistry (International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology), 39, 481–490.

Paul S, Xie S, Yao X, Dey A. 2022. Transcriptional regulation of the Hippo pathway: Current understanding and insights from single-cell technologies. Cells, 11, 2225.

Piersma B, de Rond S, Werker P M, Boo S, Hinz B, van Beuge M M, Bank R A. 2015. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. The American Journal of Pathology, 185, 3326–3337.

Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M, Gurgul A. 2018. A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits. Genetics and Molecular Biology, 41, 125–136.

Pobbati A V, Chan S W, Lee I, Song H, Hong W. 2012. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure, 20, 1135–1140

Pulkkinen H H, Kiema M, Lappalainen J P, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen M U, Ylä-Herttuala S, Laakkonen J P. 2021. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis, 24, 129–144.

Qiu H, Wang F, Liu C, Xu X, Liu B. 2011. TEAD1-dependent expression of the Foxo3a gene in mouse skeletal muscle. BMC Molecular Biology, 12, 1.

Qu S, Liao Q, Yu C, Chen Y, Luo H, Xia X, He D, Xu Z, Jose P A, Li Z, Wang W E, Lyu Q R, Zeng C. 2002. LKB1 suppression promotes cardiomyocyte regeneration via LKB1-AMPK-YAP axis. Bosnian Journal of Basic Medical Sciences, 22, 772–783.

Ribas R, Moncaut N, Siligan C, Taylor K, Cross J W, Rigby P W, Carvajal J J. 2011. Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Developmental Biology, 355, 372–380.

Ropka-Molik K, Bereta A, Żukowski K, Piórkowska K, Gurgul A, Żak G. 2017. Transcriptomic gene profiling of porcine muscle tissue depending on histological properties. Animal Science Journal, 88, 1178–1188

Dos Santos M, Backer S, Auradé F, Wong M M, Wurmser M, Pierre R, Langa F, Do Cruzeiro M, Schmitt A, Concordet J P, Sotiropoulos A, Jeffrey Dilworth F, Noordermeer D, Relaix F, Sakakibara I, Maire P. 2022. A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nature Communications, 13, 1039.

Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. 2008. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Molecular and Cellular Biology, 28, 3177–3189.

Setiawan I, Sanjaya A, Lesmana R, Yen P M, Goenawan H. 2021. Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. Journal of Physiology and Biochemistry, 77, 63–73.

Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X, Liu L, Liu D, Tan Z, Zhang Y, Qu Y, Li H, Wang Y, Jiao L, Zhang Y. 2022. CircRNA CDR1 as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. European Journal of Pharmacology, 922, 174915.

Shen J, Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo Y. 2021. Comparative transcriptome profile analysis of longissimus dorsi muscle tissues from two goat breeds with different meat production performance using RNA-Seq. Frontiers in Genetics, 11, 619399.

Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G. 2014. Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 16, 357–366.

Stoll M, Corneliussen B, Costello C M, Waetzig G H, Mellgard B, Koch W A, Rosenstiel P, Albrecht M, Croucher P J, Seegert D, Nikolaus S, Hampe J, Lengauer T, Pierrou S, Foelsch U R, Mathew C G, Lagerstrom-Fermer M, Schreiber S. 2004. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genetics, 36, 476-480.

Sun C, De Mello V, Mohamed A, Ortuste Quiroga H P, Garcia-Munoz A, Al Bloshi A, Tremblay A M, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit P S. 2017. Common and distinctive functions of the Hippo effectors Taz and Yap in skeletal muscle stem cell function. Stem Cells, 35, 1958–1972.

Schienda J, Engleka K A, Jun S, Hansen M S, Epstein J A, Tabin C J, Kunkel L M, Kardon G. 2006. Somitic origin of limb muscle satellite and side population cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 945-950.

Sun X, Ren Z, Cun Y, Zhao C, Yuan P. 2020. Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Research, 48, 7182–7196.

Tan X, He Y, Qin Y, Yan Z, Chen J, Zhao R, Zhou S, Irwin D M, Li B, Zhang S. 2022. Comparative analysis of differentially abundant proteins between high and low intramuscular fat content groups in donkeys. Frontiers in Veterinary Science, 9, 951168.

Tripathi S, Miyake T, Kelebeev J, McDermott J C. 2022. TAZ exhibits phase separation properties and interacts with Smad7 and β-catenin to repress skeletal myogenesis. Journal of Cell Science, 135, jcs259097.

Tsika R W, Schramm C, Simmer G, Fitzsimons D P, Moss R L, Ji J. 2008. Over-expression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype. Journal of Biological Chemistry, 283, 36154–36167.

Varelas X, Miller B W, Sopko R, Song S, Gregorieff A, Fellouse F A, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana J L, Attisano L. 2020. The Hippo pathway regulates Wnt/beta-catenin signaling. Developmental Cell, 18, 579–591.

Vassilev A, Kaneko K J, Shu H, Zhao Y, DePamphilis M L. 2001. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes & Development, 15, 1229–1241.

Vita G L, Polito F, Oteri R, Arrigo R, Ciranni A M, Musumeci O, Messina S, Rodolico C, Di Giorgio R M, Vita G, Aguennouz M. 2013. Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS ONE, 13, e0205514.

Wang L, Choi K, Su T, Li B, Wu X, Zhang R, Driskill J H, Li H, Lei H, Guo P, Chen E H, Zheng Y, Pan D. 2022. Multiphase coalescence mediates Hippo pathway activation. Cell, 185, 4376–4393.

Wang L, Yu P, Wang J, Xu G, Wang T, Feng J, Bei Y, Xu J, Wang H, Das S, Xiao J. 2022. Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N6-methyladenosine-modified Yap expression. Research, 2022, 9825916.

Wang M, Zhao X, Qiu R, Gong Z, Huang F, Yu W, Shen B, Sha X, Dong H, Huang J, Wang L, Zhu W, Xu W. 2021. Lymph node metastasis-derived gastric cancer cells educate bone marrow-derived mesenchymal stem cells via YAP signaling activation by exosomal Wnt5a. Oncogene, 40, 2296–2308.

Wang Q, Shi W, Zhang Q, Feng W, Wang J, Zhai C, Yan X, Li M. 2020. Inhibition of Siah2 ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial remodeling through inactivation of YAP. Life Sciences, 242, 117159.

Watt K I, Goodman C A, Hornberger T A, Gregorevic P. 2018. The Hippo signaling pathway in the regulation of skeletal muscle mass and function. Exercise and Sport Sciences Reviews,46, 92–96.

Watt K I, Judson R, Medlow P, Reid K, Kurth T B, Burniston J G, Ratkevicius A, De Bari C, Wackerhage H. 2010. Yap is a novel regulator of C2C12 myogenesis. Biochemical and Biophysical Research Communications, 393, 619–624.

Watt K I, Turner B J, Hagg A, Zhang X, Davey J R, Qian H, Beyer C, Winbanks C E, Harvey K F, Gregorevic P. 2015. The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nature Communications, 6, 6048.

Wei B, Dui W, Liu D, Xing Y, Yuan Z, Ji G. 2013. MST1, a key player, in enhancing fast skeletal muscle atrophy. BMC Biology, 11, 12.

Wu D M, Wang S, Wen X, Han X R, Wang Y J, Shen M, Fan S H, Zhang Z F, Shan Q, Li M Q, Hu B, Lu J, Chen G Q, Zheng Y L. 2018. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death & Disease, 9, 947.

Xin M, Kim Y, Sutherland L B, Qi X, McAnally J, Schwartz R J, Richardson J A, Bassel-Duby R, Olson E N. 2011. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Science Signaling, 4, ra70.

Xu T, Wang W, Zhang S, Stewart R A, Yu W. 1995. Identifying tumor suppressors in genetic mosaics: The Drosophila lats gene encodes a putative protein kinase. Development, 121, 1053–1063.

Yang Z, Nakagawa K, Sarkar A, Maruyama J, Iwasa, H, Bao Y, Ishigami-Yuasa M, Ito S, Kagechika H, Hata S, Nishina H, Abe S, Kitagawa M, Hata Y. 2014. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. Molecular and Cellular Biology, 34, 1607–1621.

Yao Y, Liu Z, Huang S, Huang C, Cao Y, Li L, Guo H, Liu F, Huang S, Liao Q, He X, Chen J, Li J, Xiang X, Xiong, J, Deng J. 2022. The E3 ubiquitin ligase, FBXW5, promotes the migration and invasion of gastric cancer through the dysregulation of the Hippo pathway. Cell Death Discovery, 8, 79.

Yatsenko A S, Kucherenko M M, Xie Y, Aweida D, Urlaub H, Scheibe R J, Cohen S, Shcherbata H R. 2020. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. BMC Medicine, 18, 8.

Ye S, Lawlor M A, Rivera-Reyes A, Egolf S, Chor S, Pak K, Ciotti G E, Lee A C, Marino G E, Shah J, Niedzwicki D, Weber K, Park P, Alam M Z, Grazioli A, Haldar M, Xu M, Perry J A, Qi J, Eisinger-Mathason T. 2018. YAP1-mediated suppression of USP31 enhances NFκB activity to promote sarcomagenesis. Cancer Research, 78, 2705–2720.

Yoshida T. 2008. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 8–17.

Yu F X, Guan K L. 2013. The Hippo pathway: Regulators and regulations. Genes & Development, 27, 355–371.

Yu F X, Zhao B, Panupinthu N, Jewell J L, Lian I, Wang L H, Zhao J, Yuan H, Tumaneng K, Li H, Fu X D, Mills G B, Guan K L. 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150, 780–791

Zhang J, Raza S, Wei D, Yaping S, Chao J, Jin W, Almohaimeed H M, A Batarfi M, Assiri R, Aggad W S, Ghalib S H, Ageeli A A. 2022. Roles of MEF2A and MyoG in the transcriptional regulation of bovine LATS2 gene. Research in Veterinary Science, 152, 417–426.

Zhang L, Noguchi Y T, Nakayama H, Kaji T, Tsujikawa K, Ikemoto-Uezumi M, Uezumi A, Okada Y, Doi T, Watanabe S, Braun T, Fujio Y, Fukada S I. 2019. The CalcR-PKA-Yap1 axis is critical for maintaining quiescence in muscle stem cells. Cell Reports, 29, 2154–2163.e5.

Zhang L N, Tian H, Zhou X L, Tian S C, Zhang X H, Wu T J. 2018. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead-4-mediated blockade of the Hippo signaling pathway. FASEB Journal, 32, 6934-6947.

Zhang S, Zhang Y, Chen C, Hu Q, Fu Y, Xu L, Wang C, Liu Y. 2022. Identification of robust and key differentially expressed genes during C2C12 cell myogenesis based on multiomics data. International Journal of Molecular Sciences, 23, 6002.

Zhang Y, Yao Y, Wang Z, Lu D, Zhang Y, Adetula A A, Liu S, Zhu M, Yang Y, Fan X, Chen M, Tang Y, Chen Y, Liu Y, Yi G, Tang Z. 2020. MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration. Genes & Diseases, 9, 1038–1048.

Zhao B, Li L, Lei Q, Guan K L. 2010. The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes & Development, 24, 862–874.

Zhao B, Tumaneng K, Guan K L. 2011. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biology, 13, 877–883.

Zhao K, Shen C, Lu Y, Huang Z, Li L, Rand C D, Pan J, Sun X D, Tan Z, Wang H, Xing G, Cao Y, Hu G, Zhou J, Xiong W C, Mei L. 2017. Muscle Yap is a regulator of neuromuscular junction formation and regeneration. The Journal of Neuroscience, 37, 3465–3477.

Zhao P, Caretti G, Mitchell S, McKeehan W L, Boskey A L, Pachman L M, Sartorelli V, Hoffman E P. 2006. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. Journal of Biological Chemistry, 281, 429–438.

Zhou H, Xiang Y, Hu M, Xu Y, Hou Y, Qi X, Fu L, Luan Y, Wang Z, Li X, Zhao Y, Zhao S. 2020. Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Cell Death & Disease, 11, 148.

Zhu H, Pan Y, Jiang Y, Li J, Zhang Y, Zhang S. 2019. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells. Human Reproduction (Oxford, England), 34, 635–645.

[1] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
No Suggested Reading articles found!