|
|
|
Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis |
ZHANG Fan, CHEN Xun-ji, WANG Jian-hua, ZHENG Jun |
1、College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
2、Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3、Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P.R.China |
|
|
摘要 Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cells revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.
Abstract Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cells revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.
|
Received: 15 July 2014
Accepted:
|
Fund: This work was supported by the National High Technology R&D Program of China (2012AA10A306), the National Natural Science Foundation of China (31330056) and the Xinjiang High-Tech Research Projects, China (201011109). |
Corresponding Authors:
ZHENG Jun, Tel: +86-10-82105863, Mobile: +86-13683230661, E-mail: zhengjun02@
caas.cn
E-mail: zhengjun02@caas.cn
|
About author: ZHANG Fan, Tel: +86-10-82105866, E-mail: zhangfan_cau@126.com |
Cite this article:
ZHANG Fan, CHEN Xun-ji, WANG Jian-hua, ZHENG Jun.
2015.
Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis. Journal of Integrative Agriculture, 14(7): 1229-1241.
|
Alexandrov N N, Brover V V, Freidin S, Troukhan M E,Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J,Flavell R B. 2009. Insights into corn genes derived fromlarge-scale cDNA sequencing. Plant Molecular Biology,69, 179-194Anderberg R J, Walker-Simmons M 1992. Isolation of a wheatcDNA clone for an abscisic acid-inducible transcript withhomology to protein kinases. Proceedings of the NationalAcademy of Sciences of the United States of America, 89,10183-10187Bateman A, Coin L, Durbin R, Finn R D, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, SonnhammerE L L, Studholme D J, Yeats C, Eddy S R. 2004. The Pfamprotein families database. Nucleic Acids Research, 32,D138-D141.Chakraborty K, Sairam R K, Bhattacharya R C. 2012. Differentialexpression of salt overly sensitive pathway genesdetermines salinity stress tolerance in Brassica genotypes.Plant Physiology Biochemistry, 51, 90-101Coello P, Hey S J, Halford N G. 2010. The sucrose nonfermenting-1-related (SnRK) family of protein kinases:potential for manipulation to improve stress toleranceand increase yield. Journal of Experimental Botany, 62,883-893Diedhiou C J, Popova O V, Dietz K J, Golldack D. 2008.The SNF1-type serine-threonine protein kinase SAPK4regulates stress-responsive gene expression in rice. BMCPlant Biology, 8, 49.Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K,Pikaard C S. 2006. Gateway-compatible vectors for plantfunctional genomics and proteomics. The Plant Journal,45, 616-629Fujii H, Verslues P E, Zhu J K. 2007. Identification of twoprotein kinases required for abscisic acid regulation ofseed germination, root growth, and gene expression inArabidopsis. The Plant Cell, 19, 485-494Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S,Kanamori N, Umezawa T, Fujita M, Maruyama K, IshiyamaK, Kobayashi M, Nakasone S, Yamada K, Ito T, ShinozakiK, Yamaguchi-Shinozaki K. 2009. Three SnRK2 proteinkinases are the main positive regulators of abscisic acidsignaling in response to water stress in Arabidopsis. Plantand Cell Physiology, 50, 2123-2132Gomez-Cadenas A, Verhey S D, Holappa L D, Shen Q,Ho T H, Walker-Simmons M K. 1999. An abscisic acidinducedprotein kinase, PKABA1, mediates abscisic acid suppressed gene expression in barley aleurone layers.Proceedings of the National Academy of Sciences of theUnited States of America, 96, 1767-1772Halford N G, Hardie D G. 1998. SNF1-related protein kinases:global regulators of carbon metabolism in plants? PlantMolecular Biology, 37, 735-748Hrabak E M. 2003. The Arabidopsis CDPK-SnRK superfamilyof protein kinases. Plant Physiology, 132, 666-680Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, WangG. 2008. Cloning and characterization of the SnRK2 genefamily from Zea mays. Plant Cell Reports, 27, 1861-1868Kim T H, Maik B. 2010. Guard cell signal transduction network:advances in understanding abscisic acid, CO2, and Ca2+signaling. Annual Review of Plant Biology, 61, 561-591Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. 2004.Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stressand abscisic acid. The Plant Cell, 16, 1163-1177Kulik A, Wawer I, Krzywinska E, Bucholc M, DobrowolskaG. 2011. SnRK2 protein kinases-key regulators ofplant response to abiotic stresses. OMICS: A Journal ofIntegrative Biology, 15, 859-872Li J, Wang X Q, Watson M B, Assmann S M. 2000. Regulation ofabscisic acid-induced stomatal closure and anion channelsby guard cell AAPK kinase. Science, 287, 300-303Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcriptionfactors, DREB1 and DREB2, with an EREBP/AP2 DNAbinding domain separate two cellular signal transductionpathways in drought-and low-temperature-responsive geneexpression, respectively, in Arabidopsis. The Plant Cell,10, 1391-1406Mao X, Zhang H, Tian S, Chang X, Jing R. 2010. TaSnRK2.4,an SNF1-type serine/threonine protein kinase of wheat(Triticum aestivum L.), confers enhanced multistresstolerance in Arabidopsis. Journal of Experimental Botany,61, 683-696McLoughlin F, Galvan-Ampudia C S, Julkowska M M, CaarlsL, van der Does D, Lauriere C, Munnik T, Haring M A,Testerink C. 2012. The Snf1-related protein kinasesSnRK2.4 and SnRK2.10 are involved in maintenance of rootsystem architecture during salt stress. The Plant Journal,72, 436-449Merlot S, Mustilli A C, Genty B, North H, Lefebvre V, Sotta B,Vavasseur A, Giraudat J. 2002. Use of infrared thermalimaging to isolate Arabidopsis mutants defective in stomatalregulation. The Plant Journal, 30, 601-609Murashige T, Skoog F. 1962. A revised medium for rapid growthand bio assays with tobacco tissue cultures. PhysiologiaPlantarum, 15, 473-497Mustilli A C. 2002. Arabidopsis OST1 protein kinase mediatesthe regulation of stomatal aperture by abscisic acid andacts upstream of reactive oxygen species production. ThePlant Cell, 14, 3089-3099Podell S, Gribskov M. 2004. Predicting N-terminal myristoylationsites in plant proteins. BMC Genomics, 5, 37.Sairam R, Deshmukh P, Saxena D. 1998. Role of antioxidantsystems in wheat genotypes tolerance to water stress.Biologia Plantarum, 41, 387-394Savouré A, Hua X J, Bertauche N, Van Montagu M, VerbruggenN. 1997. Abscisic acid-independent and abscisic aciddependentregulation of proline biosynthesis following coldand osmotic stresses in Arabidopsis thaliana. Molecular andGeneral Genetics, 254, 104-109Shan G, Embrey S K, Schafer B W. 2007. A highly specificenzyme-linked immunosorbent assay for the detection ofCry1Ac insecticidal crystal protein in transgenic WideStrikecotton. Jouranl of Agricultural and Food Chemistry, 55,5974-5979Shukla V, Mattoo A K. 2008. Sucrose non-fermenting 1-relatedprotein kinase 2 (SnRK2): A family of protein kinasesinvolved in hyperosmotic stress signaling. Physiology andMolecular Biology of Plants, 14, 91-100Steven J. Clough, Bent A F. 1998. Floral dip a simplified methodfor Agrobacterium-mediated transformation of Arabidopsisthaliana. The Plant Journal, 16, 735-743Swamy B P M, Ahmed H U, Henry A, Mauleon R, Dixit S, VikramP, Tilatto R, Verulkar S B, Perraju P, Mandal N P, Variar M,Robin S, Chandrababu R, Singh O N, Dwivedi J L, Das SP, Mishra K K, Yadaw R B, Aditya T L, Karmakar B, et al.2013. Genetic, physiological, and gene expression analysesreveal that multiple QTL enhance yield of rice mega-varietyIR64 under drought. PlOS ONE, 8, e62795.Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecularevolutionary genetics analysis (MEGA) software version 4.0.Molecular Biology and Evolution, 24, 1596-1599Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R.2013. Cloning and characterization of TaSnRK2.3, a novelSnRK2 gene in common wheat. Journal of ExperimentalBotany, 64, 2063-2080Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F,Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, ShinozakiK. 2009. Type 2C protein phosphatases directly regulateabscisic acid-activated protein kinases in Arabidopsis.Proceedings of the National Academy of Sciences of theUnited States of America, 106, 17588-17593Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, RobertN, Leung J, Rodriguez P L, Laurière C, Merlot S. 2009.Protein phosphatases 2C regulate the activation of theSnf1-related kinase OST1 by abscisic acid in Arabidopsis.The Plant Cell, 21, 3170-3184Wang M, Yuan F, Hao H, Zhang Y, Zhao H, Guo A, Hu J,Zhou X, Xie C G. 2013. BolOST1, an ortholog of OpenStomata 1 with alternative splicing products in Brassicaoleracea, positively modulates drought responses in plants.Biochemical and Biophysical Research Communications,442, 214-220Ying S, Zhang D F, Li H Y, Liu Y H, Shi Y S, Song Y C, Wang T Y,Li Y. 2011. Cloning and characterization of a maize SnRK2protein kinase gene confers enhanced salt tolerance intransgenic Arabidopsis. Plant Cell Reports, 30, 1683-1699Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K. 2002. ABA-activatedSnRK2 protein kinase is required for dehydration stresssignaling in Arabidopsis. Plant and Cell Physiology, 43,1473-1483Zhang H, Mao X, Jing R, Chang X, Xie H. 2011. Characterizationof a common wheat (Triticum aestivum L.) TaSnRK2.7gene involved in abiotic stress responses. Journal ofExperimental Botany, 62, 975-988Zhang H, Mao X, Wang C, Jing R. 2010. Overexpression of acommon wheat gene TaSnRK2.8 enhances tolerance todrought, salt and low temperature in Arabidopsis. PLoSOne, 5, e16041.Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J,Jin Y, Wang J, Wang G. 2009. Cloning and characterizationof a novel CBL-interacting protein kinase from maize. PlantMolecular Biology, 69, 661-674Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P,Zhang J, Bai Y, Wang G. 2004. Isolation and analysisof water stress induced genes in maize seedlings bysubtractive PCR and cDNA macroarray. Plant MolecularBiology, 55, 807-823 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|