For Selected: Toggle Thumbnails
    Crop Genetics · Breeding · Germplasm Resources
    Molecular mapping of leaf rust resistance genes in the wheat line Yu 356-9
    HAN Liu-sha, LI Zai-feng, WANG Jia-zhen, SHI Ling-zhi, ZHU Lin, LI Xing, LIU Da-qun, Syed J A Shah
    2015, 14(7): 1223-1228.  DOI: 10.1016/S2095-3119(14)60964-3
    Abstract ( )   PDF in ScienceDirect  
    The Chinese wheat line Yu 356-9 exhibits a high level of resistance to leaf rust. In order to decipher the genetic base of resistance in Yu 356-9, gene postulation, inheritance analyses, and chromosome linkage mapping were carried out. Gene postulation completed using 15 leaf rust pathotypes and 36 isogenic lines indicated that Yu 356-9 was resistant to all pathotypes tested. F1 and F2 plants from the cross Yu 356-9 (resistant)/Zhengzhou 5389 (susceptible) were tested with leaf rust pathotype “FHNQ” in the greenhouse. Results indicated a 3:1 segregation ratio, indicative of the presence of a single dominant leaf rust resistance gene in Yu 356-9 which was temporarily designated as LrYu. Bulk segregant analysis and molecular marker assays were used to map LrYu. Five simple sequence repeat (SSR) markers on chromosome 2BS were found closely linked to LrYu. Among these markers, Xwmc770 is the most closely linked, with a genetic distance of 5.7 cM.
    Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis
    ZHANG Fan, CHEN Xun-ji, WANG Jian-hua, ZHENG Jun
    2015, 14(7): 1229-1241.  DOI: 10.1016/S2095-3119(14)60872-8
    Abstract ( )  
    Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cells revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.
    Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean
    GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG , Ru-zheng , QIU Li-juan
    2015, 14(7): 1242-1250.  DOI: 10.1016/S2095-3119(14)60907-2
    Abstract ( )   PDF in ScienceDirect  
    Soybean is a widely planted genetically modified crop around the world. However, it is still one of the most recalcitrant crops for genetic transformation due to the difficulty of regeneration via organogenesis and some factors that affect the transformation efficiency. The percentages of resistant bud formation and transient expression efficiency are important indexes reflecting the regeneration and transformation efficiency of soybean. In this study, the percentages of resistant bud formation and transient expression of β-glucuronidase (GUS) were compared after treatment with sonication or surfactant and co-treatment with both. The results showed that treatment with either sonication or surfactant increased the percentage of resistant bud formation and transient expression efficiency. The highest percentages were acquired and significantly improved when cotyledon node explants were co-treated with sonication for 2 s and surfactant at 0.02% (v:v) using two different soybean genotypes, Jack and Zhonghuang 10. The improved transformation efficiency of this combination was also evaluated by development of herbicide-tolerant soybeans with transformation efficiency at 2.5–5.7% for different genotypes, which was significantly higher than traditional cotyledonary node method in this study. These results suggested that co-treatment with surfactant and sonication significantly improved the percentages of resistance bud formation, transient expression efficiency and stable transformation efficiency in soybean.
    Molecular evidence for blocking erucic acid synthesis in rapeseed (Brassica napus L.) by a two-base-pair deletion in FAE1 (fatty acid elongase 1)
    WU Lei, JIA Yan-li, WU Gang, LU Chang-ming
    2015, 14(7): 1251-1260.  DOI: 10.1016/S2095-3119(14)60853-4
    Abstract ( )   PDF in ScienceDirect  
    DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (EC) were isolated and characterized for 30 commercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent mutation leading to low erucic acid trait were found, i.e., a single-base transition (eA1), a two-base deletion (eC2) and four-base deletion (eC4) as well as single-base transition with a four-base deletion (eA*). Three genotypes, i.e., eA1eA1eC2eC2, eA1eA1eC4eC4 and eA*eA*eC4eC4 were responsible for LEA content in storage lipids of different rapeseed cultivars. Most of the LEAR cultivars had a genotype of eA1eA1eC2eC2, which were descended from the first LEAR cultivar, Oro. Yeast expression analysis revealed that two-base-pair (AA) deletion (eC2) at the base sites of 1422–1423 in the C genome FAE1 gene resulted in the absence of the condensing enzyme and led to the failure to produce erucic acid. Coexpression of FAE1 and ketoacyl-CoA reductase (KCR) or enoyl-CoA reductase (ECR) was found in high erucic acid rapeseed (HEAR) but not in LEAR (eA1eA1eC2eC2 or eA1eA1eC4eC4). Moreover, KCR and ECR were still coordinately regulated in eA1eA1eC2eC2 or eA1eA1eC4eC4 genotypes, suggesting that the expression of two genes was tightly linked. In addition, specific detection methods were developed by high-resolution melting curve analysis in order to detect eA1 and eC4 .
    QTL analysis of leaf photosynthesis rate and related physiological traits in Brassica napus
    YAN Xing-ying, QU Cun-min, LI Jia-na, CHEN Li, LIU Lie-zhao
    2015, 14(7): 1261-1268.  DOI: 10.1016/S2095-3119(14)60958-8
    Abstract ( )   PDF in ScienceDirect  
    Rapeseed (Brassica napus L.) oil is the crucial source of edible oil in China. In addition, it can become a major renewable and sustainable feedstock for biodiesel production in the future. It is known that photosynthesis products are the primary sources for dry matter accumulation in rapeseed. Therefore, increasing the photosynthetic efficiency is desirable for the raise of rapeseed yield. The objective of the present study was to identify the genetic mechanism of photosynthesis based on the description of relationships between different photosynthetic traits and their quantitative trait loci (QTL) by using a recombinant inbred line (RIL) population with 172 lines. Specifically, correlation analysis in this study showed that internal CO2 concentration has negative correlations with other three physiological traits under two different stages. Totally, 11 and 12 QTLs of the four physiological traits measured at the stages 1 and 2 were detected by using a high-density single nucleotidepolymorphism (SNP) markers linkage map with composite interval mapping (CIM), respectively. Three co-localized QTLs on A03 were detected at stage 1 with 5, 5, and 10% of the phenotypic variation, respectively. Other two co-localized QTLs were located on A05 at stage 2, which explained up to 12 and 5% of the phenotypic variation, respectively. The results are beneficial for our understanding of genetic control of photosynthetic physiological characterizations and improvement of rapeseed yield in the future.
    Excessive ammonia inhibited transcription of MsU2 gene and furthermore affected accumulation distribution of allantoin and amino acids in alfalfa Medicago sativa
    WANG Li, JIANG Lin-lin, Nomura Mika, Tajima Shigeyuki, CHENG Xian-guo
    2015, 14(7): 1269-1282.  DOI: 10.1016/S2095-3119(14)60908-4
    Abstract ( )   PDF in ScienceDirect  
    In legume plants, uricase gene (Nodulin-35) plays a positive role in metabolism of ureide and amide compounds in symbiotic nitrogen-fixing in the nodules. In this study, a pot experiment was performed to examine the effects of ammonium application on the transcription of MsU2 gene and distribution of major nitrogen compounds in alfalfa Medicago sativa. Data showed that alfalfa plant has a significant difference in contents of nitrogen compounds in xylem saps compared with soybean plant, and belongs to typical amide type legume plants with little ureide accumulation, and the accumulation of asparagines and ureide in the tissues of alfalfa is mainly gathered in the nodules. Northern blotting showed that excessive ammonium significantly inhibited the transcription of MsU2 gene in the nodules and roots, and mRNA accumulation of MsU2 gene in the plants exposed to excessive ammonium decreased gradually with culture time extension, indicating that application of ammonium significantly inhibited the transcription of MsU2 gene in the alfalfa plants. Although the application of excessive ammonium increased the contents of amino acids in various tissues of alfalfa, the accumulation of allantoin reflecting the strength of uricase activity is remarkably reduced in the xylem saps, stems and nodules when alfalfa plants exposed to excessive ammonium, suggesting that application of excessive ammonium generated a negative effect on symbiosis fixing-nitrogen system due to inhibition of ammonium ion on uricase activity in the nodules of alfalfa. This result seems to imply that application of excessive ammonium in legume plants should not be proposed to avoid affecting the ability of fixing nitrogen in the nodules of legume plants, and reasonable dose of ammonium should be recommended to effectively utilize the fixed N from atmosphere in legume plant production.
    Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China
    JIANG Peng, XIE Xiao-bing, HUANG Min, ZHOU Xue-feng, ZHANG Rui-chun, CHEN Jia-na, WU Dan-dan, XIA Bing, XU Fu-xian, XIONG Hong, ZOU Ying-bin
    2015, 14(7): 1283-1294.  DOI: 10.1016/S2095-3119(14)60929-1
    Abstract ( )   PDF in ScienceDirect  
    In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, field experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1, 225 kg ha–1; N2, 112.5–176 kg ha–1; N3, 0 kg ha–1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attributed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop performance of rice (especially hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efficiency, recovery efficiency of applied N, agronomic N use efficiency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively small. Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efficiency can be increased by using improved nitrogen management such as site-specific N management in both hybrid and inbred rice production.
    Growth traits and nitrogen assimilation-associated physiological parameters of wheat (Triticum aestivum L.) under low and high N conditions
    ZHANG Fei-fei, GAO Si, ZHAO Yuan-yuan, ZHAO Xiao-lei, LIU Xiao-man, XIAO Kai
    2015, 14(7): 1295-1308.  DOI: 10.1016/S2095-3119(14)60957-6
    Abstract ( )   PDF in ScienceDirect  
    In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and high N conditions. Under deficient-N, the cultivars with high N uptake efficiency (UpE) and high N utilization efficiency (UtE) exhibited higher plant biomass, yields, and N contents than those with medium and low NUEs. The high UpE cultivars accumulated more N than other NUE type cultivars. Under sufficient-N, the tested cultivars showed similar patterns in biomass, yield, and N content to those under deficient-N, but the varietal variations in above traits were smaller. In addition, the high UpE cultivars displayed much more of root biomass and larger of root length, surface area, and volume than other NUE type cultivars, indicating that the root morphological traits under N deprivation are closely associated with the plant biomass through its improvement of the N acquisition. The high UtE cultivars showed higher activities of nitrate reductase (NR), nitrite reductase (NIR), and glutamine synthetase (GS) at stages of seediling, heading and filling than other NUE type cultivars under both low and high N conditions. Moreover, the high UpE and UtE cultivars also displayed higher photosynthetic rate under deficient-N than the medium and low NUE cultivars. Together, our results indicated that the tested wheat cultivars possess dramatically genetic variations in biomass, yield, and NUE. The root morphological traits and the N assimilation enzymatic acitivities play critical roles in regulating N accumulation and internal N translocation under the N-starvation stress, respectively. They can be used as morphological and biochemical references for evaluation of UpE and UtE in wheat.
    The main physical properties of planosol in maize (Zea mays L.) cultivation under different long-term reduced tillage practices in the Baltic region
    K?stutis Romaneckas, Egidijus ?arauskis, Dovil? Avi?ienyt?, Sidona Buragien?, David Arney
    2015, 14(7): 1309-1320.  DOI: 10.1016/S2095-3119(14)60962-X
    Abstract ( )   PDF in ScienceDirect  
    The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the soils at the boundary for grain maize-growing in the semi-humid subarctic climate conditions of the Baltic states, especially on the formation of a hardened upper soil layer (10–15 cm in depth) - “loosening hardpan”. This study was carried out at the Research Station of Aleksandras Stulginskis University, Lithuania from 2009–2012. The investigations were based on a long-term (since 1988) field experiment. The aim of the investigation was to ascertain the influence of reduced primary tillage on the main soil’s physical properties. This study examined soils that were deep ploughing (DP), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC), and no-till (NT). Reducing the tillage intensity to NT had no significant effect on the structural soil’s composition; however, the stability of the structure of the >1 and >0.25 mm-size fractions was significantly higher in the non-reversibly tilled (DC, SC) and NT plots. The penetration resistance of the DP soils was less after primary tillage and wintering, and became similar to the NT plots at the end of the maize growth season. After primary tillage and wintering, the soil moisture content in the upper soil layer (0–5 cm depth) of the NT plots was 17–49 and 16–18% higher than that in the DP. Long-term reduction of primary tillage up to NT generally had no significant effect on the moisture content and soil bulk density of the 0–10 and 10–20 cm layers. The results showed that long-term RT stabilized the physical quality of soil. Less soil penetration resistance was established in the DP plots compared to both RT and NT, however, indicators of the formation of a uniform “loosening hardpan” layer were not found. It is summarized that long-term RT or NT systems stabilize, or may increase, the physical quality of soil in crop cultivation with low inter-row coverage potential (maize), and could be applied in semi-humid subarctic climate conditions as a good option to prevent soil degradation.
    Ethylene-inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions
    CHEN Yuan, J T Cothren, CHEN De-hua, Amir M H Ibrahim, Leonardo Lombardini
    2015, 14(7): 1321-1331.  DOI: 10.1016/S2095-3119(14)60999-0
    Abstract ( )   PDF in ScienceDirect  
    Cotton (Gossypium hirsutum L.) plants produce more ethylene when subjected to abiotic stresses, such as high temperatures and drought, which result in premature leaf senescence, reduced photosynthetic efficiency, and thus decreased yield. This study was conducted to test the hypothesis that the ethylene-inhibiting compound 1-methylcyclopropene (1-MCP) treatment of cotton plants can delay leaf senescence under high temperature, drought, and the aging process in controlled environmental conditions. Potted cotton plants were exposed to 1-MCP treatment at the early square stage of development. The protective effect of 1-MCP against membrane damage was found on older compared to younger leaves, indicating 1-MCP could lower the stress level caused by aging. Application of 1-MCP resulted in reduction of lipid peroxidation, membrane leakage, soluble sugar content, and increased chlorophyll content, in contrast to the untreated plants under heat stress, suggesting that 1-MCP treatment of cotton plants may also have the potential to reduce the effect of heat stress in terms of delayed senescence. Application of 1-MCP caused reductions of lipid peroxidation, membrane leakage, and soluble sugar content, together with increases in water use efficiency (WUE), water potential, chlorophyll content, and fluorescence quantum efficiency, compared to the untreated plants under drought, suggesting that 1-MCP treatment of cotton plants may also have the ability to reduce the level of stress under drought conditions. In conclusion, 1-MCP treatment of cotton should have the potential to delay senescence under heat and drought stress, and the aging process. Additionally, 1-MCP is more effective under stress than under non-stress conditions.
    Plant Protection
    Survey and examination of the potential alternative hosts of Villosiclava virens, the pathogen of rice false smut, in China
    DENG Qi-de, YONG Ming-li, LI Dan-yang, LAI Chao-hui, CHEN Hong-ming, FAN Jing, HU Dong-wei
    2015, 14(7): 1332-1337.  DOI: 10.1016/S2095-3119(15)61030-9
    Abstract ( )   PDF in ScienceDirect  
    Rice false smut is caused by ascomycete Villosiclava virens, whose potential alternative hosts have been assumed previously. Here its potential alternative hosts were surveyed and identified from 2008 to 2013 in the main rice-growing regions in China. Two common weeds in paddy fields, Digitaria sanguinalis Scop. and Echinochloa crusgalli (L.) Beauv., were found to present the similar symptoms to smut diseases in a few individuals in 2012 and 2013 in Zhejiang and Sichuan provinces of China, respectively. After the examinations of the spore morphology, their infection and extension mode in hosts, pathogen cell wall components, and molecular identification, the two pathogens were identified to be the Basidiomycetes, Ustilago syntherismae and Ustilago trichophora, respectively. So far there has been no alternative host of V. virens to be identified in China. These suggest that the alternative hosts of V. virens, if they do exist, are not possible to play an important role in the pathogen life cycle and the disease epidemics.
    The small and large subunits of carbamoyl-phosphate synthase exhibit diverse contributions to pathogenicity in Xanthomonas citri subsp. citri
    Guo Jing, SonG Xue, Zou Li-fang, Zou Hua-song, CHen Gong-you
    2015, 14(7): 1338-1347.  DOI: 10.1016/S2095-3119(14)60965-5
    Abstract ( )   PDF in ScienceDirect  
    Carbamoyl-phosphate synthase plays a vital role in the carbon and nitrogen metabolism cycles. In Xanthomonas citri subsp. citri, carA and carB encode the small and large subunits of carbamoyl-phosphate synthase, respectively. The deletion mutation of the coding regions revealed that carA did not affect any of the phenotypes, while carB played multiple roles in pathogenicity. The deletion of carB rendered the loss of pathogenicity in host plants and the ability to induce a hypersensitive reaction in the non-hosts. Quantitative reverse transcription-PCR assays indicated that 11 hrp genes coding the type III secretion system were suppressed when interacting with citrus plants. The mutation in carB also affected bacterial utilization of several carbon and nitrogen resources in minimal medium MMX and extracellular enzyme activities. These data demonstrated that only the large subunit of carbamoyl-phosphate synthase was essential for canker development by X. citri subsp. citri.
    Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation
    YANG Juan, WANG Wei, YANG Peng, TAO Bu, YANG Zheng, ZHANG Li-hui, DONG Jin-gao
    2015, 14(7): 1348-1355.  DOI: 10.1016/S2095-3119(14)60967-9
    Abstract ( )   PDF in ScienceDirect  
    A total of 479 bacterial strains were isolated from brine (Bohai, Qinhuangdao City, Hebei Province, China). Bioassay results indicated that 4 strains named Ha1, Ha17, Ha38, and Ha384 had herbicidal activity. And strain Ha1 had the highest effective herbicidal activity. As a result, this study aims to identify strain Ha1, characterize its physiological and biological activities, evaluate the herbicidal activity of its metabolites, and develop a ‘pesta’ formulation and assess its effectiveness on Digitaria sanguinalis. Ha1 was identified as Serratia marcescens based on 16S rDNA sequencing. This strain has a flagellum, a diameter of 0.5 to 0.8 μm, and a length of 0.9 to 2.0 μm. The indole test shows positive results, and the catalase enzyme exhibits strong positive reactions. Results further showed that the inhibitory concentration (IC50) of the crude extracts to D. sanguinalis radicula and coleoptile were 3.332 and 2.828 mg mL–1, respectively. Both the suppression of D. sanguinalis and the cell viability of the Ha1 formulation in ‘pesta’ were higher when stored at 4°C than at (25±2)°C. These results indicated that S. marcescens Ha1 can potentially be used as a biocontrol agent against D. sanguinalis.
    A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner)
    JIN Rong, LIU Nai-yong, LIU Yan, DONG Shuang-lin
    2015, 14(7): 1356-1366.  DOI: 10.1016/S2095-3119(14)60849-2
    Abstract ( )   PDF in ScienceDirect  
    Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membrane of the sensory neurons. OBPs in adult insects have been intensively reported, but those in larvae are rarely addressed. In our study, a full-length OBP cDNA, namely SexiOBP13, was cloned by RT-PCR and RACE strategy from the heads of Spodoptera exigua larvae. The quantitative real-time PCR (qPCR) measurement indicated that SexiOBP13 was highly expressed in larval head, but very low in other parts of larva and was not detected in any tissues of adult. The binding affinities of SexiOBP13 to plant volatiles and female sex pheromone components were measured by competitive binding assays. Interestingly, SexiOBP13 displayed a high binding affinity (Ki=3.82 μmol L–1) to Z9,E12–14:Ac, the major sex pheromone component of S. exigua, while low affinities to the tested host plant volatiles (Ki>27 μmol L–1). The behavioral tests further confirmed that Z9,E12–14:Ac was indeed active to elicit the behavioral activity of the third instar larvae of S. exigua. Taken together, our results suggest that SexiOBP13 may play a role in reception of female sex pheromone in S. exigua larvae. The ecological significance of the larvae preference to the adult female sex pheromone was discussed.
    Effects of intercropping vines with tobacco and root extracts of tobacco on grape phylloxera, Daktulosphaira vitifoliae Fitch
    WANG Zhong-yue , SU Jun-ping, LIU Wei-wei, GUO Yu-yuan
    2015, 14(7): 1367-1375.  DOI: 10.1016/S2095-3119(14)60864-9
    Abstract ( )   PDF in ScienceDirect  
    The effects of grape-tobacco intercropping patterns on populations of grape phylloxera, Daktulosphaira vitifoliae Fitch, as well as on the growth and development of the infested vines were evaluated in the field and the impact of an aqueous tobacco root extract on grape phylloxera was evaluated using a laboratory bioassay. The aqueous tobacco root extract exhibited biological activity against this pest. The egg mortality, nymph mortality, development period, life span and female fecundity were significantly affected. In the field trial, grape phylloxera populations were clearly lower as compared to the monoculture pattern. However, the rates of newly developed roots and newly infested grape roots were significantly higher and lower, in intercropping patterns than in the vine monoculture, respectively. The grape phylloxera population number on the grape roots decreased each year, and the vine trees gradually renewed upon continuous intercropping with tobacco over three years. These results confirmed that intercropping grapes with tobacco can effectively control grape phylloxera in an infested vineyard. The results also indicated that additional crops could be intercropped with grapes and are effective against grape phylloxera, which should be explored as an integrated approach for controlling the pest.
    Animal Science · Veterinary Science
    Identification of the miniature pig inbred line by skin allograft
    MU Yu-lian, LIU Lan, FENG Shu-tang, WU Tian-wen, LI Kui, LI Jun-you, HE Wei, GAO Qian, ZHOU Wen-fang, WEI Jing-liang, TANG Fang, YANG Shu-lin, WU Zhi-gu, XIA Ying, SUN Tong-zhu
    2015, 14(7): 1376-1382.  DOI: 10.1016/S2095-3119(14)60976-X
    Abstract ( )   PDF in ScienceDirect  
    Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identification of swine inbred lines by skin grafting has been reported. At present, Wuzhishan miniature pig (WZSP) inbred line has acquired the F24 individuals in China. In order to verify whether WZSP inbred line had been cultivated successfully, allogeneic skin grafts and related research were performed on F20 individuals of WZSP inbreeding population, compared with a control group of autologous transplantation. We observed the transplant recipients’ wounds, detected peripheral blood-related indicators interleukin-2, 4 and 10, CD4+ and CD8+ lymphocytes, and conducted hematoxylin-eosin (HE) and Masson’s staining of skin to judge whether the immune rejection reactions occurred within 28 days after transplantation. Chr. 7 genomic heterozygosity of 48 WZSP individuals from F20 to F22 was analyzed by high-density single nucleotide polymorphism (SNP) chips (60 000 SNPs). The result showed that there were no significant differences in graft skin, the plasma interleukin-2, 4, 10, CD4+ and CD8+, HE and Masson’s staining results between the allograft and autograft groups, and no immune rejection occurred on the allograft group. We found that 11 genes in Chr. 7 of major histocompatibility complex (MHC) I and MHC II were homozygous which confirmed that immune antibody of the allograft and autograft groups were highly identical and also provided a theoretical basis to no immune rejection occurred on the allograft in the inbred WZSP. The result proved that the WZSP inbred line had been cultivated successfully for the first time in the world. The test methods also provide a scientific basis for the identification of swine and mammal inbred lines.
    Myeloid zinc finger 1 (MZF1) is the most important transcriptional factor for porcine follistatin promoter
    SUN Ya-meng, WANG Liang, YANG Xiu-qin, ZHANG Dong-jie, LIU Di
    2015, 14(7): 1383-1389.  DOI: 10.1016/S2095-3119(14)60893-5
    Abstract ( )   PDF in ScienceDirect  
    Follistatin (FS) is a secreted protein, which was originally isolated from porcine follicular fluid. Expression of follistatin is tightly regulated during porcine growth and development. To study the essential transcriptional regions of the porcine FS promoter, ten primer pairs were designed to amplify segments with different lengths of the FS promoter from –1 800 to +16 bp. The products were then inserted into the pGL3-basic vector to analyze the relative luciferase activity. The results showed that the most remarkable changes of promoter activity were observed between constructs (–302/+16 bp)-FS and (–180/+16 bp)-FS (P<0.01). Further research showed that the reconstructed reporter plasmid lacking myeloid zinc finger 1 (MZF1) binding sequence had significantly decreased luciferase activity (P<0.05). Furthermore, the FS protein expression was significantly increased in PK15 cells while the MZF1 was overexpressed, suggesting that the short sequence “TCCCCACC” (the recognition site of transcription factor MZF1) was the most important for FS transcription activation in the porcine.
    Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise)
    HAN Ji-long, YANG Min, GUO Ting-ting, YUE Yao-jing, LIU Jian-bin, NIU Chun-e, WANG Chao-feng, YANG Bo-hui
    2015, 14(7): 1390-1397.  DOI: 10.1016/S2095-3119(14)60928-X
    Abstract ( )   PDF in ScienceDirect  
    Coat color is a key economic trait in sheep. Some candidate genes associated with animal’s coat color were found. Particularly, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and microphthalmia-associated transcription factor (MITF) play a key role in the modulation of hair pigmentation in mammals. This study investigated those two candidate genes’ mutations and expressions associated with wool color in Tibetan sheep. First, the gene polymorphisms of those two genes were analyzed, and then, relative mRNA expression levels of those two genes in skin tissue with different coat colors were compared. Thirdly, KIT and MITF protein expression levels were detected through Western blot and immunehistochemical. Allele C was predominant allele in the white coat color Tibetan sheep population of the MITF coding region g. 1548 C/T loci. The relative MITF mRNA expression in black coat skin tissue was significantly higher than white (P<0.01). However, no significant differences were detected in the KIT gene’s mRNA expression of these two different coat color skin tissues (P>0.05), while the level of KIT protein expression in skin tissues of white and black coats was also roughly equivalent. Our study observed that, the level of MITF protein expression in black coat skin tissue was significantly higher than that in white coat skin tissue, and positive staining for MITF protein expression was detected mainly in the epidermis and the dermal papilla, bulb, and outer root sheath of hair follicles. We conclude that the black coat of Tibetan sheep is related to high MITF expression in the hair follicles, and MITF may be important for coat color formation of Tibetan sheep.
    Expression patterns of OCT4, NANOG, and SOX2 in goat preimplantation embryos from in vivo and in vitro
    YU Xiao-li, ZHAO Xiao-e, WANG Hua-yan, MA Bao-hua
    2015, 14(7): 1398-1406.  DOI: 10.1016/S2095-3119(14)60923-0
    Abstract ( )   PDF in ScienceDirect  
    The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian development with spatio- temporal pattern and took part in regulation of development. However, their expression and roles in goat had not been reported. In the present study, the expression of OCT4, NANOG, and SOX2 in goat preimplantation embryos both in vivo and in vitro were detected by real-time RCR and immunofluorescence. For in vivo fertilized embryos, the transcripts of OCT4, NANOG, and SOX2 could be detected from oocytes to blastocyst stage, their expression in morula and blastocyst stages was much higher than other stage. OCT4 protein was detected from oocyte to blastocyst, but the fluorescence was more located-intensive with nuclei from 8-cell stage, its expression present in both inner cell mass (ICM) and trophoblast cells (TE) at blastocyse stage. NANOG protein was similar to OCT4, the signaling of fluorescence completely focused on cell nuclei, while the SOX2 firstly showed nuclei location in morula. Comparing to in vivo fertilized embryo, the mRNA of these three transcription factors could be detected at 8-cell stage in parthenogenetic embryos (in vitro). Thereafter, the expressional level rose gradually along with embryo development. The locations of OCT4 and NANOG proteins were similar to in vivo fertilized embryos, and they located in cell nuclei from morula to blastocyst stage, while SOX2 protein firstly could be detected in cell nuclei at 8-cell stage. These differences suggested that OCT4, NANOG, and SOX2 played different function in regulating development of goat preimplantation embryos. These results may provide a novel insight to goat embryo development and be useful for goat ESCs isolation.
    iTRAQ quantitative analysis of plasma proteome changes of cow from pregnancy to lactation
    MA Lu, BU Deng-pan, YANG Yong-xing, YAN Su-mei, WANG Jia-qi
    2015, 14(7): 1407-1413.  DOI: 10.1016/S2095-3119(14)60916-3
    Abstract ( )   PDF in ScienceDirect  
    Dairy cows undergo tremendous changes in physiological, metabolism and the immune function from pregnancy to lactation that are associated with cows being susceptible to metabolic and infectious diseases. The objective of this study is to investigate the changes of plasma proteome on 21 d before expected calving and 1 d after calving from dairy cows using an integrated proteomic approach consisting of minor abundance protein enrichment by ProteoMiner beads, protein labeling by isobaric tags for relative and absolute quantification, and protein identification by liquid chromatography coupled with tandem mass spectrometry. Nineteen proteins were changed around the time of calving. These proteins were associated with response to stress, including acute-phase response and defense response, based on the proteins annotation. In particular, three up-regulated proteins after calving including factor V, α2-antiplasmin and prothrombin were assigned into the complement and coagulation pathway. These results may provide new information in elucidating host response to lactation and parturition stress, and inflammatory-like conditions at the protein level. Differential proteins may serve as potential markers to regulate the lactation and parturition stress in periparturient dairy cows.
    Soil & Fertilization﹒Irrigation﹒Plant Nutrition﹒ Agro-Ecology & Environment
    Reduction of arsenic bioavailability by amending seven inorganic materials in arsenic contaminated soil
    SUN Yuan-yuan, LIU Rong-le, ZENG Xi-bai, LIN Qi-mei, BAI Ling-yu, LI Lian-fang, SU Shi-ming, WANG Ya-nan
    2015, 14(7): 1414-1422.  DOI: 10.1016/S2095-3119(14)60894-7
    Abstract ( )   PDF in ScienceDirect  
    Seven inorganic amendment materials were added into arsenic (As) contaminated soil at a rate of 0.5% (w/w); the materials used were sepiolite, red mud, iron grit, phosphogypsum, ferrihydrite, iron phosphate, and layered double oxides (LDO). Plant growth trials using rape (edible rape, Brassia campestris L.) as a bio-indicator are commonly used to assess As bioavailability in soils. In this study, B. campestris was grown in a contaminated soil for 50 days. All of the inorganic amendments significantly inhibited the uptake of As by B. campestris. Following soil treatment with the seven aforementioned inorganic ammendments, the As concentrations in the edible parts of B. campestris were reduced by 28.6, 10.5, 8.7, 31.0, 47.4, 25.3, and 28.8%, respectively, as compared with the plants grown in control soil. The most effective amendment was ferrihydrite, which reduced As concentration in B. campestris from 1.84 to 0.97 mg kg–1, compared to control. Furthermore, ferrihydrite-treated soils had a remarkable decrease in both non-specifically sorbed As and available-As by 67 and 20%, respectively, comparing to control. Phosphogypsum was the most cost-effective amendment and it showed excellent performance in reducing the water soluble As in soils by 31% and inhibiting As uptake in B. campestris by 21% comparing to control. Additionally, obvious differences in As transfer rates were observed in the various amendments. The seven amendment materials used in this study all showed potential reduction of As bioavailability and influence on plant growth and other biological processes still need to be further explored in the long term.
    Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil
    ZHANG Zhi-qiang, WANG Xiu-bin, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei, JIN Jiyun
    2015, 14(7): 1423-1433.  DOI: 10.1016/S2095-3119(14)60878-9
    Abstract ( )   PDF in ScienceDirect  
    Organic manure application is an important measure for high yield and good quality vegetable production, whereas organic manure is also a main source of residual antibiotic in soils. A 3-yr experiment was conducted on a fluvo-aguic soil in Tianjin of northern China. The objective of this study was to investigate the effects of different fertilization patterns on yield of six-season vegetables with celery and tomato rotation, and dynamic change of tetracyclines residues in the soil during the sixth growing season (tomato season). The field experiment comprised six treatments depending on the proportion of nitrogen of each type of fertilizer: 4/4 CN (CN, nitrogen in chemical fertilizer), 3/4 CN+1/4 MN (MN, nitrogen in pig manure), 2/4 CN+2/4 MN, 1/4 CN+3/4 MN, 2/4 CN+1/4 MN+1/4 SN (SN, nitrogen in corn straw), and CF (conventional fertilization, the amounts of nitrogen application were 943 and 912 kg N ha–1 for celery and tomato season, respectively). In addition to CF treatment, the amount of nitrogen application in other treatments was greatly reduced and equal (450 and 450 kg N ha–1 for celery and tomato season, respectively). Results showed that the combined application of 3/4 CN+1/4 MN achieved the highest yield and economic benefit in the first four seasons, but addition of straw (2/4 CN+1/4 MN+1/4 SN treatment) performed better in the subsequent two seasons, and the average yields of 2/4 CN+1/4 MN+1/4 SN treatment were respectively higher by 9.9 and 12.8% than those of 4/4 CN treatment, and by 5.6 and 10.5% than those of CF treatment. The residual chlortetracycline (CTC) in manure-amended soil for three consecutive years increased along with the increase of applied amount of pig manure. Under the same amount of pig manure application, content of CTC in straw-amended soil was obviously decreased compared with no straw-amended soil (3/4 CN+1/4 MN treatment), and averagely decreased by 41.9% for four sampling periods in the sixth season. Addition of crop straw facilitated the degradation of CTC in manure-amended soil. As a whole, the conventional fertilization was not the desirable pattern based on yield, economic benefit and environment, the optimal fertilization pattern with the highest yield and profit and the least soil chlortetracycline residue was the treatment of 2/4 CN+1/4 MN+1/4 SN under this experimental condition.
    Stem flow of seed-maize under alternate furrow irrigation and double-row ridge planting in an arid region of Northwest China
    BO Xiao-dong, DU Tai-sheng, DING Ri-sheng, TONG Ling, LI Si-en
    2015, 14(7): 1434-1445.  DOI: 10.1016/S2095-3119(14)60930-8
    Abstract ( )   PDF in ScienceDirect  
    Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of Northwest China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (θ), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP>MP>NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environmental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.