Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 888-900    DOI: 10.1016/j.jia.2023.09.032
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China

Cheng Guo1, Xiaojie Zhang2, Baobao Wang3, Zhihuan Yang4, Jiping Li1, Shengjun Xu1, Chunming Wang1, Zhijie Guo1, Tianwang Zhou1, Liu Hong1, Xiaoming Wang4#, Canxing Duan4##br#

1 Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China

2 Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China

3 Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China

4 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米是重要的粮、饲、经兼用型作物,在全世界广泛种植。2011年,在甘肃省灵台县和临洮县玉米植株上发现了一种新的叶部病害。病侵染玉米叶片,叶尖和缘处呈现不规则的褪绿病变,病斑向内扩展变褐,导致半叶或全叶枯死,其上散生大量黑色点状子实体。近年来,该病害已从甘肃扩展到周边宁夏的整个县区、陕西的部分区域及内蒙古的呼和浩特,且危害程度逐年加重,对我国西北春玉米产业的健康发展已构成严重威胁。为明确玉米新发病害叶枯病的病原菌种类,并筛选出有效的防治药剂,本研究于2018年—2020年自甘肃省和宁夏回族自治区123个村镇采集具有典型叶枯病症状的玉米叶片,分离和纯化后获得245株培养性状一致的菌株,通过形态学特征、多基因序列分析和致病性测定,确定了引起玉米叶枯病的病原菌,并采用菌丝生长速率法测定了该病原菌对6种杀菌剂的敏感性。对病原菌进行传统的形态学观察,病原菌的菌落形态、有性和无性形态与真小孢帽属真菌较为相似;通过ITSSSULSUTEFTUB多位点系统发育分析发现病原菌与鸭茅真小孢帽菌(Eutiarosporella dactylidis)聚为一类。根据不同地理来源,12株代表菌株接种后出现的病害症状与田间表现一致,供试菌株的致病力无明显差异。供试药剂中,咯菌腈和多菌灵对E. dactylidis菌丝生长的抑制作用最强,EC50值分别为0.0063 ± 0.0013μg mL-10.0260 ± 0.0035 μg mL-1。本研究首次报道了E. dactylidis是引起玉米叶枯病的病原菌,咯菌腈和多菌灵可有效抑制病菌菌丝生长。研究结果将为玉米真小孢帽菌叶枯病病害诊断和科学防控提供依据。



Abstract  

Maize (Zea mays L.) is an economically vital grain crop that is cultivated worldwide.  In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China.  The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues.  Given favourable environmental conditions, this disease spread to areas surrounding Gansu.  In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018 and 2020 to identify the disease-causing pathogen.  Based on morphological features, pathogenicity tests, and multi-locus phylogenetic analysis involving internal transcribed spacer (ITS), 18S small subunit rDNA (SSU), 28S large subunit rDNA (LSU), translation elongation factor 1-alpha (TEF), and β-tubulin (TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight.  Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis.  The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight.

Keywords:  Maize leaf blight       morphology        molecular phylogeny        Eutiarosporella dactylidis        fungicide sensitivity   
Received: 17 April 2023   Accepted: 23 August 2023
Fund: The research was supported by the Doctor Foundation of Gansu Academy of Agricultural Sciences, China (2020GAAS33), the Young Science and Technology Lifting Engineering Talents in Gansu Province, China (2020-18), and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2017-ICS).  
About author:  Cheng Guo, E-mail: gsguoch@126.com; #Correspondence Xiaoming Wang, Tel: +86-10-82109608, E-mail: wangxiaoming@caas.cn; Canxing Duan, Tel: +86-10-82109608, E-mail: duancanxing@caas.cn

Cite this article: 

Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan. 2024.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China . Journal of Integrative Agriculture, 23(3): 888-900.

Baldauf S L, Doolittle W F. 1997. Origin and evolution of the slime molds (Mycetozoa). Proceedings of the National Academy of Sciences of the United States of America, 94, 12007–12012.

Barkat E. 2016. Fungi associated with stored wheat grain in Australia: Isolation, identification and characterization. Ph D thesis, Murdoch University, Australia.

Brent K J, Hollomon D W. 1998. Fungicide Resistance: the Assessment of Risk. FRAC Monograph No. 2. Global Crop Protection Federation, Brussels.

Burgess T I, Tan Y P, Garnas J, Edwards J, Scarlett K A, Shuttleworth L A, Daniel R, Elizabeth K. Dann E K, Parkinson L E, Dinh Q, Shivas R G, Jami F. 2019. Current status of the Botryosphaeriaceae in Australia. Australasian Plant Pathology, 48, 35–44.

Carbone I, Kohn L M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

Chen Y W, Xu J Q, Wang S, Xu D C, Ma S C, Huang Y L, Hou Y. 2021. Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province. Chinese Journal of Pesticide Science, 24, 306–314. (in Chinese)

Cooper J, Dobson H. 2007. The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337–1348.

Crous P W, Müller M M, Sánchez R M, Giordano L, Bianchinotti M V, Anderson F E, Groenewald J Z. 2015. Resolving Tiarosporella spp. allied to Botryosphaeriaceae and Phacidiaceae. Phytotaxa, 202, 73–93.

Denman S, Crous P W, Taylor J E, Kang J C, Pascoe L, Wingfield M J. 2000. An overview of the taxonomic history of Botryosphaeria, and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Studies in Mycology, 45, 129–140.

Dissanayake A J, Phillips A J L, Li X H, Hyde K D. 2016. Botryosphaeriaceae: Current status of genera and species. Mycosphere, 7, 1001–1073.

Dissanayake A J, Camporesi E, Hyde K D, Yan J Y, Li X H. 2017. Saprobic Botryosphaeriaceae, including Dothiorella italica sp. nov., associated with urban and forest trees in Italy. Mycosphere, 8, 1157–1167.

Edlind T D, Li J, Visvesvara G S, Vodkin M H, McLaughlin G L, Katiyar S K. 1996. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Molecular Phylogenetics and Evolution, 5, 359–367.

Fang ZH D. 2007. Research methods of plant disease. China Agricultural Press, Beijing. (in Chinese)

Glass N L, Donaldson G C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

González de la Huebra M J, Hernández P, Nieto O, Ballesteros Y, Hernández L. 2000. Determination of carbendazim in soil samples by anodic stripping voltammetry using a carbon fiber ultramicroelectrode. Fresenius’ Journal of Analytical Chemistry, 367, 474–478.

Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.

He L F, Chen L L, Xiao B, Zhao S F, Li X H, Mu W, Liu F. 2018. Establishment of sensitivity baseline and evaluation of field control efficacy of fludioxonil against Fulvia fulva. Scientia Agricultura Sinica, 51, 1475–1483. (in Chinese)

Jami F, Slippers B, Wingfield M J, Gryzenhout M. 2012. Five new species of the Botryosphaeriaceae from Acacia karroo in South Africa. Cryptogamie Mycologie, 33, 245–266.

Jami F, Slippers B, Wingfield M J, Gryzenhout M. 2014. Botryosphaeriaceae species overlap on four unrelated, native South African hosts. Fungal Biology, 118, 168–179.

Jong-Hwan S, Joon-Hee H, Kyong L J, Su K K. 2014. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. The Plant Pathology Journal, 30, 397–406.

Lamichhane J R, Dachbrodt-Saaydeh S, Kudsk P, Messéan A. 2016. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Disease, 100, 10–24.

Lawrence D P, Hand F P, Gubler W D, Trouillas F P. 2017.Botryosphaeriaceae species associated with dieback and canker disease of bay laurel in northern California with the description of Dothiorella californica sp. nov. Fungal Biology, 121, 347–360.

Lew R R. 2010. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal genetics and Biology, 47, 721–726.

Li G J, Hyde K D, Zhao R L, Hongsanan S, Abdel-Aziz F A., Abdel-Wahab M A, Alvarado P, Alves-Silva G, Ammirati J F, Ariyawansa H A, Baghela A, Bahkali A H, Beug M, Bhat D J, Bojantchev D, Boonpratuang T, Bulgakov T S, Camporesi E, Boro M C, Ceska O, et al. 2016. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 78, 1–237.

Li T, Li N, Lei Z Y, Zhang C Q. 2023. Sensitivity and resistance risk of Botryosphaeria dothidea causing Chinese hickory trunk canker to fludioxonil. Pesticide Biochemistry and Physiology, 194, 105500.

Minh B Q, Nguyen M A, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.

Müller M M, Hantula J. 1998. Diversity of Tiarosporella parca in Finland, Norway and Switzerland. Mycological Research, 102, 1163–1168.

Nguyen LT, Schmidt H A, von Haeseler A, Minh B Q, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

O’Donnell K, Cigelnik E, Nirenberg I H. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.

Phillips A J L, Fonseca F, Povoa V, Castilho R, Nolasco G. 2002. A reassessment of the anamorphic fungus Fusicoccum luteum and description of its teleomorph Botryosphaeria lutea sp. nov. Sydowia, 54, 59–77.

Qin R F. 2011. Identification of pathogens causing apple bitter rot and grape ripe rot in Shanxi Province. MSc thesis, Northwest A & F University, Yangling. (in Chinese)

Schirra M, D’Aquino S, Palma A, Marceddu S, Angioni A, Cabras P, Scherm B, Migheli Q. 2005. Residue level, persistence, and storage performance of citrus fruit treated with fludioxonil. Journal of Agricultural and Food Chemistry, 53, 6718–6724.

Seyran M, Brenneman T B, Stevenson K L. 2010. In vitro toxicity of alternative oxidase inhibitors salicylhydroxamic acid and propyl gallate on Fusicladium effusum. Journal of Pest Science, 83, 421–427.

Shoemaker R A. 1964. Conidial states of some Botryosphaeria species on Vitis and Quercus. Canadian Journal of Botany, 42, 1297–1301.

Sieber T. 1988. Endophytische Pilze in Nadeln von gesunden und geschädigten Fichten (Picea abies [L.] Karsten). European Journal of Forest Pathology, 18, 321–342.

Slippers B, Crous P W, Denman S, Coutinho T A, Wingfield B D, Wingfield M J. 2004. Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia, 96, 83–101.

Slippers B, Wingfield M J. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21, 90–106.

Slippers B, Burgess T, Pavlic D, Ahumada R, Maleme H, Mohali S, Rodas C, Wingfield M J. 2009. A diverse assemblage of Botryosphaeriaceae infect eucalyptus in native and non-native environments. Southern Forests: A Journal of Forest Science, 71, 101–110.

Su Z H, Zhang X, Zhao J J, Wang W Q, Shang L, Ma S N, Adzavon Y M, Lu F, Weng M T, Han X Y, Yang L, Zhao Q H, Zhao P X, Xie F, Ma X M. 2019. Combination of suspension array and mycelial growth assay for detecting multiple-fungicide resistance in Botrytis cinerea in Hebei Province in China. Plant Disease, 2019, 1213–1219.

Sutton B C, Marasas W F O. 1976. Observations on Neottiosporina and Tiarosporella. Transactions of the British Mycological Society, 67, 69–76.

Taylor J W, Jacobson D J, Fisher M. 1999. The evolution of asexual fungi: speciation and classification. Annual Review of Phytopathology, 37, 197–246.

Thambugala K M, Daranagama D A, Camporesi E, Singtripop C, Liu Z Y, Hyde K D. 2014. Multi-locus phylogeny reveals the sexual state of Tiarosporella in Botryosphaeriaceae. Cryptogamie: Mycologie, 35, 359–367.

Thynne E, McDonald M C, Evans M, Wallwork H, Neate S, Solomon P S. 2015. Re-classification of the causal agent of white grain disorder on wheat as three separate species of Eutiarosporella. Australasian Plant Pathology, 44, 527–539.

Thynne E, McDonald M C, Solomon P S. 2017. Transition from heterothallism to homothallism is hypothesised to have facilitated speciation among emerging Botryosphaeriaceae wheat-pathogens. Fungal Genetics and Biology, 109, 36–45.

Vilgalys R, Hester M. 1990. Rapid gene identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.

White T J, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J, eds., PCR Protocols: A Guide to Methods and Applications. Academic Press, New York. pp. 315–322.

Yun Y, Liu Z, Zhang J, Shim W, Chen Y, Ma Z. 2014. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Environmental microbiology, 16, 2023–2037.

Zhang D, Gao F L, Jakovlić I, Zou H, Zhang J, Li W X, Wang G T. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resource, 20, 348–355.

Zhang J X, Xu Y F, Xu Y F, Dai D J, Liu Y H, Zhang C Q. 2017. Isolation and identification of two main soil-borne pathogens on Atractylodes macrocephala and screening of fungicides in vitro. Plant Protection, 43, 177–181, 186. (in Chinese)

[1] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[2] HU Hong-lian, YANG Shu-qing, CHENG Meng, SONG Li-wen, XU Ming, GAO Min, YU Zhong-tang. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3302-3313.
No Suggested Reading articles found!