Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Implementing strip configurations in cotton-soybean intercropping systems improves crop productivity and optimizes land use efficiency

Qiyuan Guo1*, Zhitao Liu1*, Wenchao Zhao2*, Jianli Zhou1, Xuanshuang Zhang1, Lunxiao Shang1, Jiaxue Zhao1, Han Wang1, Longhao Zhou1, Yuanchao Fang1, Lingyan Dong2, Hongxin Qi2, Ruming Wang2, Baltaevich Ahmedov Miraziz1, Xiaopei Zhang1, Aziz Khan1, Lili Mao1#, Xianliang Song1#

1 College of Agronomy, Shandong Agricultural University, Taian 271018, China

2 Dezhou Academy of Agricultural Sciences, Dezhou 253500, China

 Highlights 

Intercropping improves cotton leaf photosynthesis and nitrogen uptake, ensuring high lint yield.

Both intercropping systems are suitable for agricultural mechanization.

The 3C5S row ratio configuration increases crop revenue and land use efficiency.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

条带配置在调节间作系统的作物生产力和资源利用方面发挥至关重要的作用。然而,关于棉花-大豆间作系统中适配机械化操作的条带宽度,仍存在显著研究空白。具体而言,明确条带宽度如何增强作物生产力和土地利用效率方面的协同作用是当前研究的关键要务。本研究评估了行比(条带)配置对间作和单作系统中作物生长、生理、生产力和土地利用效率的影响。处理包括2个间作处理(2行棉花与3行大豆交替种植2C3S)、3行棉花与5行大豆交替种植3C5S))和2个单作对照(单作棉花(MC)和单作大豆(MS))。与单作棉花相比,3C5S系统在盛铃期的叶绿素含量(SPAD值)两年平均提高6.64%并在初花期显著提高了叶面积指数(LAI)和冠层光合有效辐射截留率(In)。此外,在吐絮期,该系统进一步提高了棉铃和整株的氮素吸收量。间作通过促进干物质向生殖器官的转运,显著提高铃密度,进而实现皮棉高产3C5S配置的表现优于2C3S,两年内平均土地当量比提升9.2%,净收益增加了15.87%。主成分分析结果表明,3C5S棉花收获指数与其他生理指标的相关性更强Mantel检验表明,棉花-大豆间作产量与棉花叶面积指数和大豆地上部生物量密切相关。结构方程模型表明,氮素吸收量是3C5S系统作物产量的关键驱动因素。综上,与2C3S和单作系统相比,3C5S提高了作物生产力和土地利用效率,代表了最佳的棉花-大豆间作配置策略。2C3S3C5S间作系统采用标准的2:1行距(棉花76厘米,大豆38厘米),与中国主流农业机械兼容,同时作物条带之间预留55厘米的作业间距,支持全程机械化播种和收获,进而降低劳动力成本,提高生产收益。



Abstract  

Strip configurations play a crucial role in mediating crop productivity and resource utilization in intercropping systems. However, there remains a substantial knowledge gap concerning the mechanization-adaptive strip widths for cotton-soybean intercropping systems. Specifically, understanding how these strip widths can enhance synergies in crop productivity and land use efficiency is imperative. This study evaluated the impact of row ratio (strip) configurations on crop growth, physiology, productivity and land use efficiency in intercropped and monoculture systems. Treatments included two intercropping treatments (two rows of cotton plants alternating with three rows of soybean plants (2C3S), and three rows of cotton alternating with five rows of soybean (3C5S)), and two monoculture controls (monoculture cotton (MC), and monoculture soybean (MS)). Compared with monoculture cotton, the 3C5S system significantly increased both years averaged based chlorophyll content (SPAD value) by 6.64% at the peak boll-setting stage with increased leaf area index (LAI) and canopy photosynthetically active radiation interception ratio (In) during the early flowering stage. Furthermore, at the boll-opening stage, this system further enhanced boll and total plant nitrogen uptake. Intercropping significantly increased cotton boll density by enhancing dry matter translocation to reproductive organs with high lint yield. The 3C5S configuration outperformed 2C3S, increased the land equivalent ratio by 9.2% and net revenue by 15.87% over both years. The PCA results showed stronger relationships between cotton harvest index and other physiological parameters in 3C5S. The Mantel test indicates that yield of cotton-soybean intercropping was closely associated with cotton leaf area index and soybean aboveground biomass. Structural equation modeling identified nitrogen uptake as the key driver of yield in 3C5S. Overall, 3C5S improved crop productivity and land use efficiency compared to both 2C3S and monoculture systems, representing the optimal cotton-soybean intercropping strategy. The 2C3S and 3C5S intercropping systems were designed with a standard 2:1 row spacing (76 cm for cotton and 38 cm for soybean), compatible with mainstream agricultural machinery in China. A 55 cm operational clearance was maintained between crop strips to support fully mechanized sowing and harvesting, thereby reducing labor cost with high production revenue.

Keywords:  strip configuration       mechanized adaptation       photosynthetic capacity       nitrogen uptake       crop production revenue  
Online: 29 January 2026  
Fund: 

The study was supported by the Natural Science Foundation of Shandong Province (ZR2022MC085), the earmarked fund for Shandong Agriculture Research System (SDARS-03-04/06), and the Key R&D Program of Shandong Province, China (2023LZGC007).

About author:  #Correspondence Lili Mao, Mobile: +86-15065489612, E-mail: maolili6666@163.com; Xianliang Song, Mobile: +86-13793836345, E-mail: songxl999@163.com *These authors contributed to the work equally.

Cite this article: 

Qiyuan Guo, Zhitao Liu, Wenchao Zhao, Jianli Zhou, Xuanshuang Zhang, Lunxiao Shang, Jiaxue Zhao, Han Wang, Longhao Zhou, Yuanchao Fang, Lingyan Dong, Hongxin Qi, Ruming Wang, Baltaevich Ahmedov Miraziz, Xiaopei Zhang, Aziz Khan, Lili Mao, Xianliang Song. 2026. Implementing strip configurations in cotton-soybean intercropping systems improves crop productivity and optimizes land use efficiency. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.042

Arif M, Ilyas M, Riaz M, Ali K, Shah K, Haq I U, Fahad S. 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research, 214, 25-37.

Cao N, Chen G D, Wang S, Li H Q, Lin J, Hu Q, Wan S M. 2025. Optimizing plant density and nitrogen fertilization in jujube/cotton intercropping systems for sustainable yield and reduced greenhouse gas emissions. Field Crops Research, 326, 109873.

Chapagain T, Riseman A. 2015. Nitrogen and carbon transformations, water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems. Nutrient Cycling in Agroecosystems, 101, 107-121.

Chapepa B, Mudada N, Mapuranga R. 2020. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: An overview. Journal of Cotton Research, 3, 18.

Chen H, Wu W, Du K, Yang J, Kang X. 2025. CCT39 transcription factor promotes chlorophyll biosynthesis and photosynthesis in poplar. Plant, Cell & Environment, 48, 3136-3150.

Cheng B, Wang L, Liu R J, Wang W B, Yu R W, Zhou T, Ahmad I, Raza A, Jiang S J, Xu M, Liu C Y, Yu L, Wang W Y, Jing S Z, Liu W G, Yang W Y. 2022. Shade-tolerant soybean reduces yield loss by regulating its canopy structure and stem characteristics in the maize–soybean strip intercropping system. Frontiers in Plant Science, 13, 848893.

Chi B J, Liu J, Dai J L, Li Z H, Zhang D M, Xu S Z, Nie J J, Wan S M, Li C D, Dong H Z. 2023. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Research, 302, 109059.

Czaban W, Han E, Lund O S, Stokholm M S, Jensen S M, Thorup-Kristensen K. 2023. The enhancing effect of intercropping sugar beet with chicory on the deep root growth and nutrient uptake. Agriculture, Ecosystems & Environment, 347, 108360.

Falster D S, Westoby M. 2003a. Leaf size and angle vary widely across species: What consequences for light interception?. New Phytologist, 158, 509-525.

Falster D S, Westoby M. 2003b. Plant height and evolutionary games. Trends in Ecology & Evolution, 18, 337-343.

Gu Y, Zheng H Y, Li S, Wang W T, Guan Z Y, Li J Z, Mei N, Hu W H. 2024. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize‒soybean intercropping systems. Scientific Reports, 14, 9361.

He S Y, Li X N, Chen M G, Xu X Y, Zhang W J, Chi H L, Shao P X, Tang F D, Gong T, Guo M, Xu M, Yang W Y, Liu W G. 2024. Excellent canopy structure in soybeans can improve their photosynthetic performance and increase yield. Agriculture, 14, 1783.

Hu J, Zhao X Y, Gu L M, Liu P, Zhao B, Zhang J W, Ren B Z. 2023. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agricultural Water Management, 289, 108525.

Jiang P, Wang Y Z, Zhang Y P, Fei J C, Rong X M, Peng J W, Yin L C, Luo G W. 2024. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. New Phytologist, 243, 1506-1521.

Jing B, Shi W J, Wang H, Lin F M. 2023. 15N labeling technology reveals enhancement of nitrogen uptake and transfer by root interaction in cotton/soybean intercropping. Journal of the Science of Food and Agriculture, 103, 6307-6316.

Jolliffe P A, Wanjau F M. 1999. Competition and productivity in crop mixtures: Some properties of productive intercrops. The Journal of Agricultural Science, 132, 425-435.

Kandel B P. 2020. Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes, 13, 475.

Khan A, Wang L S, Ali S, Tung S A A, Hafeez A, Yang G Z. 2017. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 214, 164-174.

Khan M A, Wahid A, Ahmad M, Tahir M T, Ahmed M, Ahmad S, Hasanuzzaman M. 2020. World cotton production and consumption: An overview. In: Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies. Springer, Singapore. pp. 1-7.

Kong W S, Wei M, Khan N, Liang J, Han D Q, Zhang H J. 2024. Assessing sustainable future of import-independent domestic soybean production in China: Policy implications and projections for 2030. Frontiers in Sustainable Food Systems, 8, 1387609.

Kou H T, Liao Z Q, Liu Y Y, Lai Z L, Li Z J, Fan J L. 2025a. Row configuration affects plant growth and grain yield of drip-irrigated maize-soybean strip intercropping system by regulating photosynthetic capacity and grain filling process. Journal of Agriculture and Food Research, 21, 101920.

Kou H T, Liao Z Q, Liu Y Y, Zhang H, Lai Z L, Yu J, Li Z J, Fan J L. 2025b. Light distribution, interception and use efficiency of drip-fertigated maize-soybean strip intercropping systems under various row configuration conditions. Plant, Cell & Environment.

Li C J, Stomph T J, Makowski D, Li H G, Zhang C C, Zhang F S, Van Der Werf W. 2023. The productive performance of intercropping. Proceedings of the National Academy of Sciences of the United States of America, 120, e2201886120.

Li J, Xie R Z, Wang K R, Hou P, Ming B, Zhang G Q, Liu G Z, Wu M, Yang Z S, Li S K. 2018. Response of canopy structure, light interception and grain yield to plant density in maize. The Journal of Agricultural Science, 156, 785-794.

Li Y H, Shi D Y, Li G H, Zhao B, Zhang J W, Liu P, Ren B Z, Dong S T. 2019. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize. Journal of Integrative Agriculture, 18, 2219-2229.

Li Y J, Ma L S, Wu P T, Zhao X N, Chen X L, Gao X D. 2020. Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Field Crops Research, 248, 107656.

Liang J P, He Z J, Shi W J. 2020. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agricultural Water Management, 240, 106277.

Liu X, Rahman T, Song C, Yang F, Su B Y, Cui L, Bu W Z, Yang W Y. 2018. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 224, 91-101.

Lu J T, Dong Q Q, Lan G H, He Z C, Zhou D Y, Zhang H, Wang X G, Liu X B, Jiang C J, Zhang Z, Wan S B, Zhao X H, Yu H Q. 2023. Row ratio increasing improved light distribution, photosynthetic characteristics, and yield of peanut in the maize and peanut strip intercropping system. Frontiers in Plant Science, 14, 1135580.

Lv Q Q, Chi B J, He N, Zhang D M, Dai J L, Zhang Y J, Dong H Z. 2023. Cotton-based rotation, intercropping, and alternate intercropping increase yields by improving root–shoot relations. Agronomy, 13, 413.

Lv Q Q, Dai J L, Ding K D, He N, Li Z H, Zhang D M, Xu S Z, Li C D, Chi B J, Zhang Y J, Dong H Z. 2024. Managing interspecific competition to enhance productivity through selection of soybean varieties and sowing dates in a cotton-soybean intercropping system. Field Crops Research, 316, 109513.

Lv Q Q, He N, Chi B J, Xu S Z, Li Z H, Wang L, Zhang Y J, Zhang D M, Cui Z P, Dai J L, Nie J J, Zhang Y J, Gan Y T, Dong H Z. 2025. Spatiotemporal diversification enables sustainable cotton-soybean production with enhanced yield and reduced emissions. Journal of Cleaner Production, 527, 146709.

Mai W X, Xue X R, Gu F, Tian C Y. 2018. Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management. BMC Plant Biology, 18, 334.

Mead R, Willey R. 1980. The concept of a ‘land equivalent ratio’and advantages in yields from intercropping. Experimental Agriculture, 16, 217-228.

Nasar J, Shao Z, Arshad A, Jones F G, Liu S, Li C, Khan M Z, Khan T, Banda J S K, Zhou X, Gao Q. 2020. The effect of maize–alfalfa intercropping on the physiological characteristics, nitrogen uptake and yield of maize. Plant Biology, 22, 1140-1149.

Pagano M C, Miransari M. 2016. The importance of soybean production worldwide. In: Abiotic and Biotic Stresses in Soybean Production. Academic Press. America. pp. 1-26.

Parry M A J, Reynolds M, Salvucci M E, Raines C, Andralojc P J, Zhu X G, Price G D, Condon A G, Furbank R T. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62, 453-467.

Qiang B B, Fan Z, Tang N, Asad M S, Timbang B C, Ren X L, Chen X L. 2024. Improving the productivity of intercropping through above and below ground separation: A case study on photosynthetic characteristics and root distribution. Industrial Crops and Products, 222, 119506.

Qiao M J, Sun R B, Wang Z X, Dumack K, Xie X G, Dai C C, Wang E T, Zhou J Z, Sun B, Peng X H, Bonkowski M, Chen Y. 2024. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications, 15, 2924.

Qiu Y R, Li X, Tang Y R, Xiong S W, Han Y C, Wang Z B, Feng L, Wang G P, Yang B F, Lei Y P, Du W L, Zhi X Y, Xin M H, Jiao Y H, Zhang S J, Li Y B, Li X F. 2023. Directly linking plant N, P and K nutrition to biomass production in cotton-based intercropping systems. European Journal of Agronomy, 151, 126960.

Raza M A, Din A M U, Yasin H S, Gul H, Saeed A, Mehmood A, Rehman S U, Iqbal Z, Iqbal R, Kubaisi N A, Elshikh M S, Shah G A, Wang Z Q, Rahman M H U, Khalid M H B, Haider I, Ma Z M. 2025. Yield gains and resource use advantages driven by legume choice and row ratio in cotton/legume intercropping under arid-irrigated conditions. Field Crops Research, 324, 109789.

Raza M A, Wang Z Q, Yasin H S, Gul H, Qin R J, Rehman S U, Mahmood A, Iqbal Z, Ahmed Z, Luo S L, Chen J, Liang X, Gitari H, Khalid M H B, Feng Y, Ma Z M. 2023. Effect of crop combination on yield performance, nutrient uptake, and land use advantage of cereal/legume intercropping systems. Field Crops Research, 304, 109144.

Raza M A, Yasin H S, Gul H, Qin R J, Din A M U, Khalid M H B, Hussain S, Gitari H, Saeed A, Wang J, Chiyaneh E R, Sabagh A E, Manzoor A, Fatima A, Ahmad S, Yang F, Skalicky M, Yang W Y. 2022. Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions. Frontiers in Plant Science, 13, 1006720.

Ren Y Y, Zhang L, Yan M F, Zhang Y J, Chen Y L, Palta J A, Zhang S Q. 2021. Effect of sowing proportion on above-and below-ground competition in maize–soybean intercrops. Scientific Reports, 11, 15760.

Salama H S A, Abdel-Moneim M H. 2021. Maximizing land use efficiency and productivity of soybean and fodder maize intercrops through manipulating sowing schedule and maize harvest regime. Agronomy, 11, 863.

Schwerdtner U, Spohn M. 2022. Plant species interactions in the rhizosphere increase maize N and P acquisition and maize yields in intercropping. Journal of Soil Science and Plant Nutrition, 22, 3868-3884.

Smith E N, van Aalst M, Tosens T, Niinemets Ü, Stich B, Morosinotto T, Alboresi A, Erb T J, Gómez-Coronado P A, Tolleter D, Finazzi G, Curien G, Heinemann M, Ebenhöh O, Hibberd J M, Schlüter U, Sun T, Weber A P M. 2023. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Molecular Plant, 16, 1547-1563.

Tang Z J, Wang X, Xiang Y Z, Liang J P, Guo J J, Li W Y, Lu J S, Du R Q, Li Z J, Zhang F C. 2024. Application of hyperspectral technology for leaf function monitoring and nitrogen nutrient diagnosis in soybean (Glycine max L.) production systems on the Loess Plateau of China. European Journal of Agronomy, 154, 127098.

Tian X L, Wang C B, Bao X G, Wang P, Li X F, Yang S C, Ding G C, Christie P, Li L. 2019. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 436, 173-192.

Wang C, Zhou L B, Zhang G B, Gao J, Peng F L, Zhang C L, Xu Y, Zhang L Y, Shao M B. 2021. Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems. Field Crops Research, 263, 108077.

Wang G F, Wang D P, Zhou X Y, Shah S, Wang L C, Ahmed M, Sayyed R Z, Fahad S. 2022. Effects of cotton–peanut intercropping patterns on cotton yield formation and economic benefits. Frontiers in Sustainable Food Systems, 6, 900230.

Wang J B, Chen G D, Wang P J, Cui Z J, Wan S M, Zhai Y L, Li T T, Zhao Y R. 2024. Optimizing cotton row configuration in jujube–cotton intercropping systems improves their productivity, net effects, and sustainability. Agronomy, 14, 1216.

Wang L, Zhou T, Cheng B, Du Y L, Qin S S, Gao Y, Xu M, Lu J J, Liu T, Li S X, Liu W G, Yang W Y. 2020. Variable light condition improves root distribution shallowness and P uptake of soybean in maize/soybean relay strip intercropping system. Plants, 9, 1204.

Wang R N, Sun Z X, Bai W, Wang E L, Wang Q, Zhang D S, Zhang Y, Yang N, Liu Y, Nie J Y, Chen Y F, Duan L S, Zhang L Z. 2021. Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping. Field Crops Research, 271, 108239. 

Wang Y Z, Zhang Y P, Yang Z Y, Fei J C, Zhou X, Rong X M, Peng J W, Luo G W. 2024. Intercropping improves maize yield and nitrogen uptake by regulating nitrogen transformation and functional microbial abundance in rhizosphere soil. Journal of Environmental Management, 358, 120886.

Wang Z K, Zhao X N, Wu P T, He J Q, Chen X L, Gao Y, Cao X C. 2015. Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 204, 58-66.

Wu G, Yu F F, Yuan M M, Wang J B, Liu C, He W Z, Ge Z H, Sun Y X, Liu Y. 2022. Responses of rhizosphere bacterial and fungal communities to the long-term continuous monoculture of water oat. Microorganisms, 10, 2174.

Wu Y S, Chen M, Huang S R, Li Y, Li M, He D, Hu P C, Duan T, Gong W Z, Yan Y H, Kwame T J, Raza M A, Yang W Y. 2025. Combining modelling and experiment to quantify light interception and inter row variability on intercropped soybean in strip intercropping. European Journal of Agronomy, 164, 127508.

Xi H, Shen J L, Qu Z, Yang D Y, Liu S M, Nie X H, Zhu L F. 2019. Effects of long-term cotton continuous cropping on soil microbiome. Scientific Reports, 9, 18297.

Xiao S S, Ming L W, Zhang Y F, Wang Z Y, Li F M, Wang T H, Zhang C Y, Yang K J, Yu S, Li M K, Yu S Q, Hou J J, An J Y, Guo M J, Tian X J, Liu J H. 2025. Effects of intercropping long- and short-season varieties on the photosynthetic characteristics and yield formation of maize in high-latitude cold regions. Agronomy, 15, 2505.

Xie W, Zhang K, Wang X Y, Zou X X, Zhang X J, Yu X N, Wang Y F, Si T. 2022. Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities. BMC Plant Biology, 22, 121.

Yin W, Chai Q, Zhao C, Yu A Z, Fan Z L, Hu F L, Fan H, Guo Y, Coulter J A. 2020. Water utilization in intercropping: A review. Agricultural Water Management, 241, 106335.

Yu Y, Stomph T J, Makowski D, Van der Werf W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133-144.

Zhai M H, Wei X W, Pan Z L, Xu Q Q, Qin D L, Li J H, Zhang J, Wang L Z, Wang K F, Duan X Y, Zhang Y P, Zhao W Q, Li A, Zhang Z G, Wang Z B. 2024. Optimizing plant density and canopy structure to improve light use efficiency and cotton productivity: Two years of field evidence from two locations. Industrial Crops and Products, 222, 119946.

Zhang D S, Zhang L Z, Liu J G, Han S, Wang Q, Evers J, Liu J, Van der Werf W, Li L. 2014. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Research, 169, 132-139.

Zhang L, Van der Werf W, Zhang S, Li B, Spiertz J H J. 2007. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research, 103, 178-188.

Zhang S T, Wang J B, Cui Z J, Li T T, Dong Z L, Qiao H, Li L, Wan S M, Li X F, Zhang W, Hu Q, Chen G D. 2025. Jujube–cotton intercropping enhances yield and economic benefits via photosynthetic regulation in oasis agroecosystems of southern Xinjiang. Agronomy, 15, 1676.

Zhang Y T, Liu J, Zhang J Z, Liu H B, Liu S, Zhai L M, Wang H Y, Lei Q L, Ren T Z, Yin C B. 2015. Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat. PLoS ONE, 10, e0129245.

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops[J]. >Journal of Integrative Agriculture, 2026, 25(1): 302-312.
[3] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
[4] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[5] TANG Chan-juan, LUO Ming-zhao, ZHANG Shuo, JIA Guan-qing, TANG Sha, JIA Yan-chao, ZHI Hui, DIAO Xian-min. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1618-1630.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[8] ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen. Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1755-1771.
[9] Muhammad Amjad BASHIR, ZHAI Li-mei, WANG Hong-yuan, LIU Jian, Qurat-Ul-Ain RAZA, GENG Yu-cong, Abdur REHIM, LIU Hong-bin. Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3356-3367.
[10] REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2018, 17(2): 296-305.
[11] XU Hai-cheng, DAI Xing-long, CHU Jin-peng, WANG Yue-chao, YIN Li-jun, MA Xin, DONG Shu-xin, HE Ming-rong. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat[J]. >Journal of Integrative Agriculture, 2018, 17(2): 315-327.
[12] YONG Tai-wen, CHEN Ping, DONG Qian, DU Qing, YANG Feng, WANG Xiao-chun, LIU Wei-guo, YANG Wen-yu. Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system[J]. >Journal of Integrative Agriculture, 2018, 17(03): 664-676.
[13] CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LI Wei, LIN Zhi-an, HU Shu-wen, SHEN Bing. Review grain yield and nitrogen use efficiency in rice production regions in China[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2456-2466.
[14] LI Yan-feng, LI Jiu-sheng, ZHANG Hang. Effects of Chlorination on Soil Chemical Properties and Nitrogen Uptake for Tomato Drip Irrigated with Secondary Sewage Effluent[J]. >Journal of Integrative Agriculture, 2014, 13(9): 2049-2060.
[15] SUN Jian-lei, SUI Xiao-lei, HUANG Hong-yu, WANG Shao-hui, WEI Yu-xia , ZHANG Zhenxian. Low Light Stress Down-Regulated Rubisco Gene Expression and Photosynthetic Capacity During Cucumber (Cucumis sativus L.) Leaf Development[J]. >Journal of Integrative Agriculture, 2014, 13(5): 997-1007.
No Suggested Reading articles found!