Review grain yield and nitrogen use efficiency in rice production regions in China
CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LI Wei, LIN Zhi-an, HU Shu-wen, SHEN Bing
1、Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning,
Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2、College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R.China
3、China Blue Chemical Ltd., Beijing 100029, P.R.China
摘要 As one of the staple food crops, rice (Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency (NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index (HIN), indigenous N supply (INS), internal N efficiency (IEN), reciprocal internal N efficiency (RIEN), agronomic N use efficiency (AEN), partial N factor productivity (PEPN), physiological N efficiency (PEN), and recover efficiency of applied N (REN) averaged 7.69 t ha–1, 152 kg ha–1, 0.64 kg kg–1, 94.1 kg kg–1, 53.9 kg kg–1, 1.98 kg kg–1, 12.6 kg kg–1, 48.6 kg kg–1, 33.8 kg kg–1, and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha–1 commonly achieved higher rice grain yield compared to less than 200 kg N ha–1 and more than 250 kg N ha–1 at most rice planting regions. At N rates of 200 to 250 kg ha–1, significant positive linear relationships were observed between rice grain yield and AEN, PEN, REN, IEN, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AEN, PEN, REN, IEN, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE.
Abstract As one of the staple food crops, rice (Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency (NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index (HIN), indigenous N supply (INS), internal N efficiency (IEN), reciprocal internal N efficiency (RIEN), agronomic N use efficiency (AEN), partial N factor productivity (PEPN), physiological N efficiency (PEN), and recover efficiency of applied N (REN) averaged 7.69 t ha–1, 152 kg ha–1, 0.64 kg kg–1, 94.1 kg kg–1, 53.9 kg kg–1, 1.98 kg kg–1, 12.6 kg kg–1, 48.6 kg kg–1, 33.8 kg kg–1, and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha–1 commonly achieved higher rice grain yield compared to less than 200 kg N ha–1 and more than 250 kg N ha–1 at most rice planting regions. At N rates of 200 to 250 kg ha–1, significant positive linear relationships were observed between rice grain yield and AEN, PEN, REN, IEN, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AEN, PEN, REN, IEN, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE.
CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LI Wei, LIN Zhi-an, HU Shu-wen, SHEN Bing.
2015.
Review grain yield and nitrogen use efficiency in rice production regions in China. Journal of Integrative Agriculture, 14(12): 2456-2466.
Andrews M, Lea P J. 2013. Our nitrogen ‘footprint’: The needfor increased crop nitrogen use efficiency. Annals of AppliedBiology, 163, 165-169
Cassman K G, Dobermann A, Sta Cruz P C. 1996. Soil organicmatter and the indigenous nitrogen supply of intensiveirrigated rice systems in the tropics. Plant and Soil, 182,267-278
Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. 2007.Progress in research and development on hybrid rice:A super-domesticate in China. Annals of Botany, 100,959-966
National Bureau of Statistics. 2013. China Agriculture Yearbook.China Agriculture Press, Beijing. (in Chinese)
Cui Z L, Zhang F S, Dou Z X, Miao Y X, Sun Q P, Chen X P, LiJ L, Ye Y L, Yang Z P, Zhang Q, Liu C S, Huang S M. 2009.Regional evaluation of critical nitrogen concentrations inwinter wheat production of the North China Plain. AgronomyJournal, 101, 159-166
Dai X Q, Zhang H Y, Spiertz J H J, Yu J, Xie G H, Bouman B AM. 2009. Crop response of aerobic rice and winter wheat tonitrogen, phosphorus and potassium in a double croppingsystem. Nutrient Cycling in Agroecosystems, 86, 301-315
Dobermann A R. 2005. Nitrogen use efficiency - State ofthe art. In: Proceedings of the International Workshop onEnhanced-efficiency Fertilizers. International FertilizerIndustry Association, Paris. p. 316.
Dobermann A, Witt C, Abdulrachman S, Gines H, NagarajanR, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K.2003a. Estimating indigenous nutrient supplies for sitespecificnutrient management in irrigated rice. AgronomyJournal, 95, 924-935
Dobermann A, Witt C, Abdulrachman S, Gines H C, NagarajanR, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K,Phung C V, Stalin P, Muthukrishnan P, Ravi V, Babu M,Simbahan G C, Adviento M A A. 2003b. Soil fertility andindigenous nutrient supply in irrigated rice domains of Asia.Agronomy Journal, 95, 913-923
Fan M, Lu S, Jiang R, Liu X, Zhang F. 2009. Triangulartransplanting pattern and split nitrogen fertilizer applicationincrease rice yield and nitrogen fertilizer recovery.Agronomy Journal, 101, 1421.
Food and Agriculture Organization. 2012. FAOSTAT-agriculturedatabase. [2014-10-18]. http://faostat.fao.org
Gao Q, Li C, Feng G, Wang J, Cui Z, Chen X, Zhang F. 2012.Understanding yield response to nitrogen to achieve highyield and high nitrogen use efficiency in rainfed corn.Agronomy Journal, 104, 165-168
Haefele S M, Wopereis M C S, Ndiaye M K, BarroS, EouldIsselmou M. 2003. Internal nutrient efficiencies, fertilizerrecovery rates and indigenous nutrient supply of irrigatedlowland rice in Sahelian West Africa. Field Crops Research,80, 19-32
Hossain M F, White S K, Elahi S F, Sultana N, Choudhury M H K, Alam Q K, RotherJ A, Gaunt J L. 2005. The efficiencyof nitrogen fertiliser for rice in Bangladeshi farmers’ fields.Field Crops Research, 93, 94-107
Ladha J K, Pathak H, Krupnik T J, Six J, van Kessel C.2005. Efficiency of fertilizer nitrogen in cereal production:Retrospects and prospects. Advances in Agronomy, 87,85-156
Lea P J, Azevedo R A. 2006. Nitrogen use efficiency. 1. Uptakeof nitrogen from the soil. Annals of Applied Biology, 149,243-247
Lemaire G, Gastal F. 1997. N uptake and distribution in plantcanopies. In: Lemaire G, ed., Diagnosis of the NitrogenStatus in Crops, Springer-Verlag, Berlin. pp. 3-43
Li B, Li J. 1989. Fertilizer efficiency and measures to improvefertilizer efficiency in China. Acta Pedologica Sinica, 26,273-279 (in Chinese)
Li S, He P, Jin J. 2013. Nitrogen use efficiency in grainproduction and the estimated nitrogen input/output balancein China agriculture. Journal of the Science of Food andAgriculture, 93, 1191-1197
Li G H, Xue L H, Gu W, Yang C D, Wang S H, Ling Q H, Qin X,Ding Y F. 2009. Comparison of yield components and planttype characteristics of high-yield rice between Taoyuan, a‘special eco-site’ and Nanjing, China. Field Crops Research,112, 214-221
Novoa R, Loomis R S. 1981. Nitrogen and plant production.Plant and Soil, 58, 177-204
National Population Development Strategy Research Group.2007. Report on National Population Development Strategy.China Population Press, China. (in Chinese)
Ohnishi M, Horie T, Homma K, Supapoj N, Takano H,Yamamoto S. 1999. Nitrogen management and cultivareffects on rice yield and nitrogen use efficiency in NortheastThailand. Field Crops Research, 64, 109-120
Pan S G, Huang S Q, Zhai J, Wang J P, Cao C G, Cai M L,Zhan M, Tang X R. 2012. Effects of N management on yieldand N uptake of rice in central China. Journal of IntegrativeAgriculture, 11, 1993-2000
Peng S, Cassman K G. 1998. Upper threshholds of nitrogenuptake rates and associated nitrogen fertilizer efficienciesin irrigated rice. Agronomy Journal, 90, 178-185
Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, WangG, Zhang F. 2006. Strategies for overcoming low agronomicnitrogen use efficiency in irrigated rice systems in China.Field Crops Research, 96, 37-47
Peng S, Tang Q, Zou Y. 2009. Current status and challenges ofrice production in China. Plant Production Science, 12, 3-8
SAS Institute. 1990. SAS user’s guide: Statistics. SAS Institute,Cary, NC.
Sui B, Feng X, Tian G, Hu X, Shen Q, Guo S. 2013. Optimizingnitrogen supply increases rice yield and nitrogen useefficiency by regulating yield formation factors. Field CropsResearch, 150, 99-107
Tong C L, Hall C A S, Wang H Q. 2003. Land use change inrice, wheat and maize production in China (1961-1998)
Wang G, Dobermann A, Witt C, Sun Q, Fu R. 2001. Performanceof site-specific nutrient management for irrigated rice inSoutheast China. Agronomy Journal, 93, 869-878
Witt C, Dobermann A, Abdulrachman S, Gines H C, GuanghuoW, Nagarajan R, Satawatananont S, Thuc Son T, Sy TanP, Van Tiem L, Simbahan G, COlk D C. 1999. Internalnutrient efficiencies of irrigated lowland rice in tropical andsubtropical Asia. Field Crops Research, 63, 113-138
Xu X, He P, Pampolino M F, Chuan L, Johnston A M, Qiu S,Zhao S, Zhou W. 2013. Nutrient requirements for maize inChina based on QUEFTS analysis. Field Crops Research,150, 115-125
Yu Y, Huang Y, Zhang W. 2012. Changes in rice yields in Chinasince 1980 associated with cultivar improvement, climateand crop management. Field Crops Research, 136, 65-75
Yue S, Meng Q, Zhao R, Ye Y, Zhang F, Cui Z, Chen X. 2012.Change in nitrogen requirement with increasing grain yieldfor winter wheat. Agronomy Journal, 104, 1687-1693
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, ChenX P, Jiang R F. 2008. Nutrient use efficiencies of majorcereal crops in China and measures for improvement. ActaPedologica Sinica, 45, 915-924 (in Chinese)
Zhang Q, Yang Z, Zhang H, Yi J. 2012. Recovery efficiency andloss of 15N-labelled urea in a rice-soil system in the upperreaches of the Yellow River basin. Agriculture, Ecosystems& Environment, 158, 118-126
Zhao B Q, Li X Y, Li X P, Shi X J, Huang S M, Wang B R, ZhuP, Yang X Y, Liu H, Chen Y, Poulton P, Powlson D, ToddA, Payne R. 2010. Long-term fertilizer experiment networkin China: Crop yields and soil nutrient trends. AgronomyJournal, 102, 216-230
Zhu Z L. 1992. Fertilizer fate and N management in agroecosystem.In: Zhu Z L, Wen Q X, eds., Nitrogen in Soil ofChina. Jiangsu Science and Technology Press, Nanjing.pp. 228-245 (in Chinese)
Zhu Z L, Chen D L. 2002. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environmentand best management strategies. Nutrient Cycling inAgroecosystems, 63, 117-127