Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1631-1644    DOI: 10.1016/j.jia.2022.08.035
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity
DU Xiang-bei1, XI Min2, WEI Zhi1, CHEN Xiao-fei1, WU Wen-ge2#, KONG Ling-cong1#

1 Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, P.R.China

2 Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

我国长江流域的小麦-水稻两熟种植模式下,稻茬小麦的产量显著受到逐渐增加的渍害不利影响。我们前期研究发现,高畦种植模式(RBP)可减轻稻茬小麦渍害影响,提高穗粒数最终产量提高。然而,有关RBP模式下穗粒数增加的生理机制尚不清楚。于2018/20192019/2020两个生长季节进行大田试验,研究不同种植模式(RBP 和常规平作种植(FP))对小麦小花分化、籽粒形成特征以及叶片光合源特征的影响。研究结果表明,RBP改善了小麦小花发育过程中的土壤-植物氮(N)素供应,促进了小花的平衡发育,导致每穗可育小花数量增加了9.5%。此外,RBP延缓了小麦叶片的衰老,光合源强提高了13.9%,生产了更多的同化物用于籽粒灌浆。叶片衰老延迟主要由于较高叶片N含量和增强的抗氧化代谢。最终,RBP穗粒数增加了7.6-8.6%,籽粒产量提高了10.4-12.7%。因此,RBP模式下小麦穗粒数增加的主要原因是穗分化过程的改善和叶片光合源能力的增强。同时,这项技术还有待于进一步研究改进。

Abstract  The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting (RBP) pattern may reduce waterlogging and increase the wheat yield after rice cultivation by improving the grain number per spike. However, the physiological basis for grain formation under RBP conditions remains poorly understood. The present study was performed over two growing seasons (2018/2019 and 2019/2020) to examine the effects of the planting pattern (i.e., RBP and flat planting (FP)) on the floret and grain formation features and leaf photosynthetic source characteristics of wheat. The results indicated that implementation of the RBP pattern improved the soil–plant nitrogen (N) supply during floret development, which facilitated balanced floret development, resulting in a 9.5% increase in the number of fertile florets per spike. Moreover, the RBP pattern delayed wheat leaf senescence and increased the photosynthetic source capacity by 13.9%, which produced more assimilates for grain filling. Delayed leaf senescence was attributed to the resultant high leaf N content and enhanced antioxidant metabolism. Correspondingly, under RBP conditions, 7.6–8.6% more grains per spike were recorded, and the grain yield was ultimately enhanced by 10.4–12.7%. These results demonstrate that the improvement of the spike differentiation process and the enhancement of the leaf photosynthetic capacity were the main reasons for the increased grain number per spike of wheat under the RBP pattern, and additional improvements in this technique should be achievable through further investigation.
Keywords:  grain number       floret development       photosynthetic capacity       wheat grown after rice  
Received: 15 January 2003   Online: 16 May 2022   Accepted: 24 April 2022

This work was funded by the National Key Research and Development Program of China (2017YFD0301306, 2018YFD0300906).

About author:  DU Xiang-bei, E-mail:; #Correspondence WU Wen-ge, Tel: +86-551-63370369, E-mail: wuwenge@vip.; KONG Ling-cong, Tel: +86-551-65146602, E-mail:

Cite this article: 

DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. 2023. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity. Journal of Integrative Agriculture, 22(6): 1631-1644.

Agüera E, Cabello P, De la Haba P. 2010. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiol Plantarum138, 256–267.

Ahmad S, Su W N, Kamran M, Ahmad I, Meng X P, Wu X R, Javed T, Han Q F. 2020. Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma257, 1079–1092.

Araki H, Hamada A, Hossain M, Takahashi T. 2012. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 137, 27–36.

Arduini I, Orlandi C, Pampana S, Masoni A. 2016. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop & Pasture Science, 67, 703–711.

Awal M A, Ikeda T. 2003. Effect of elevated soil temperature on radiation-use efficiency in peanut stands. Agricultural and Forest Meteorology118, 63–74.

Bakker D, Hamilton G, Houlbrooke D, Spann C, Van Burgel A. 2007. Productivity of crops grown on raised beds on duplex soils prone to waterlogging in Western Australia. Australian Journal of Experimental Agriculture47, 1368–1376.

Bakker D M, Hamilton G J, Hetherington R, Spann C. 2010. Productivity of waterlogged and salt-affected land in a Mediterranean climate using bed-furrow systems. Field Crops Research117, 24–37.

Bancal P. 2008. Positive contribution of stem growth to grain number per spike in wheat. Field Crops Research105, 27–39.

Becheran D E, Miralles D J, Abeledo L G, Alvarez Prado S, de San Celedonio R P. 2022. Source-sink limitations for grain weight in wheat and barley under waterlogging conditions during pre-anthesis. Journal of Agronomy and Crop Science, 208, 7688.

Bogard M, Jourdan M, Allard V, Martre P, Perretant M R, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J. 2011. Anthesis date mainly explained correlations between post anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 62, 3621–3636.

Chibane N, Caicedo M, Martinez S, Marcet P, Revilla P, Ordás B. 2021. Relationship between delayed leaf senescence (stay-green) and agronomic and physiological characters in maize (Zea mays L.). Agronomy-Basel, 11, 276.

Christopher J T, Manschadi A M, Hammer G L, Borrell A K. 2008. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal of Agricultural Research, 59, 354–364.

Ciancio N, Miralles D J, Striker G G, Abeledo L G. 2021. Plant growth rate after, and not during, waterlogging better correlates to yield responses in wheat and barley. Journal of Agronomy and Crop Science, 207, 304–316.

Cotrozzi L, Lorenzini G, Nali C, Pisuttu C, Pampana S, Pellegrini E. 2021. Transient waterlogging events impair shoot and root physiology and reduce grain yield of durum wheat cultivars. Plants, 10, 2357. 

Demotes–Mainard S, Jeuffroy M H. 2004. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research87, 221–233.

Derkx A P, Orford S, Griffiths S, Foulkes M J, Hawkesford M J. 2012. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. Journal of Integrative Plant Biology54, 555–566.

Ding J F, Cheng Y M, Huang Z J, Li C Y, Guo W S, Zhu X K. 2015. Difference analysis of post-anthesis matter production and senescence characteristics among different nitrogen efficiency populations in wheat following rice. Acta Agronomica Sinica48, 1063–1073. (in Chinese)

Ding L L, Cheng H, Liu Z F, Ren W W. 2013. Experimental warming on the rice–wheat rotation agro-ecosystem. Plant Science Journal31, 49–56.

Du X B, He W C, Gao S Q, Liu D,Wu W G, Tu D B, Kong L C, Xi M. 2022. Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production. Energy245, 123256.

Du X B, He W C, Wang Z, Xi M, Xu Y Z, Wu W G, Gao S Q, Liu D, Lei W X, Kong L C. 2021. Raised bed planting reduces waterlogging and increases yield in wheat following rice. Field Crops Research, 265, 108119.

Du X B, Kong L C, Xi M, Wu W G, Chen J H, Yue W. 2019. Characteristics of resource allocation and utilization of rice-wheat double cropping system in the Jianghuai Area. Chinese Journal of Eco-Agriculture, 27, 1078–1087. (in Chinese)

Evans G C. 1972. The Quantitative Analysis of Plant Growth. Blackwell Scientific Publications, Oxford. p. 734.

Ferrante A, Savin R, Slafer G A. 2010. Floret development of durum wheat in response to nitrogen availability. Journal of Experimental Botany61, 4351–4359.

Fischer R A, Stockman Y M. 1986. Increased kernel number in Norin 10-derived dwarf wheat: Evaluation of the cause. Functional Plant Biology13, 767–784.

Foulkes M J, Slafer G A, Davies W J, Berry P M, Sylvester–Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. 2011. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany62, 469–486. 

Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. 2011. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research123, 139–152.

Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machineryin abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

González F G, Slafer G A, Miralles D J. 2003. Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crops Research81, 29–38.

González F G, Terrile I I, Falcón M O. 2011. Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): variation in modern argentinean wheats. Crop Science51, 1693–1702.

Herzog M, Striker G G, Colmer T D, Pedersen O. 2016. Mechanisms of waterlogging tolerance in wheat−a review of root and shoot physiology. Plant Cell Environment, 39, 1068–1086.

Hunt R. 1978. Plant growth analysis. In: Studies in Biology. Edward Arnold, London. p. 61

Kitonyo O M, Sadras V O, Zhou Y, Denton M D. 2018. Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crops Research225, 92–103.

Li H S. 2000. Experimental Principles and Techniques of Plant Physiology and Biochemistry. Higher Education Press, Beijing.

Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. 2021. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. Journal of Integrative Agriculture, 20, 606–621.

Liu R, Wang J, Shi J, Chen Y, Sun C, Zhang P, Shen Z. 2014. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment, 468469, 10691077.

Manik S M N, Pengilley G, Dean G, Field B, Shabala S, Zhou M. 2019. Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Frontiers in Plant Science10, 140.

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environment33, 453–467.

Ogg C L. 1960. Determination of nitrogen by the micro–Kjeldahl method. Journal of Association Official Agriculture Chemistry, 43, 689–693.

Raza M A, Feng L Y, van der Werf W, Iqbal N, Khan I, Hassan M J, Ansar M, Chen Y K, Xi Z J, Shi J Y. 2019. Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Research244, 107647.

Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. 2012. Achieving yield gains in wheat. Plant Cell Environment, 35, 1799–1823.

Serrago A R, Miralles D J, Slafer G A. 2008. Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. European Journal of Agronomy, 28, 301–308.

Shao G C, Lan J J, Yu S E, Liu N, Guo R Q, She D L. 2013. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica, 51, 429–437.

Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5, 291–317. 

Sinclair T R, Jamieson P D. 2006. Grain number, wheat yield, and bottling beer: An analysis. Field Crops Research, 298, 60–67.

Smith M R, Rao I M, Merchant A. 2018. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science9, 1889.

Srivalli B, Khanna-Chopra R. 2001. Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochemical and Biophysical Research Communications288, 1037–1042.

Tiryakioğlu M, Karanlik S, Arslan M. 2015. Response of bread-wheat seedlings to waterlogging stress. Turkish Journal of Agriculture and Forestry39, 807–816.

Wang L Z, Chen F J, Zhang F S, Ma G H. 2010. Two strategies for achieving higher yield under phosphorus deficiency in winter wheat grown in field conditions. Field Crops Research118, 36–42.

Wang X X, Huang K W, Gao J S, Szeto Y T, Jiang C C, Zhu J, Zhang J S, Liu J Q. 2021. Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA. Science of the Total Environment, 792, 148247.

Wei O, Xu X, Hao Z, Gao X. 2017. Effects of soil moisture content on upland nitrogen loss. Journal of Hydrology546, 7180.

Wei S, Wang X, Shi D, Li Y, Zhang J, Liu P, Zhao B, Dong S. 2016. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. Plant Physiology and Biochemistry105, 118–128.

Wellburn A, Lichtenthaler H. 1984. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Advances in Photosynthesis Research. Springer, (Belgium). pp. 9–12

Wu X L, Tang Y L, Li C S, McHugh A D, Li Z, Wu C. 2018. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research215, 163–172.

Wu X L, Tang Y L, Li C S, Wu C, Huang G. 2015. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 18, 284–294.

Yamori W, Noguchi K, Hikosaka K, Terashima I. 2010. Phenotypic plasticity inphotosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiology, 152, 388–399.

Zadoks J C, Chang T T, Konzak C F. 1974. A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

Zhang Z, Li J, Hu N Y, Li W, Qin W L, Li J P, Gao Y M, Liu Y, Sun Z C, Yu K, Wang Z M, Zhang Y H. 2021. Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crops Research260, 108007.

Zhu Y G, Chu J P, Dai X L, He M R. 2019. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. European Journal of Agronomy, 104, 49–62. 

[1] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[2] TANG Chan-juan, LUO Ming-zhao, ZHANG Shuo, JIA Guan-qing, TANG Sha, JIA Yan-chao, ZHI Hui, DIAO Xian-min. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1618-1630.
[3] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[4] CHEN Dan, ZHANG Jin-peng, LIU Wei-hua, WU Xiao-yang, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms[J]. >Journal of Integrative Agriculture, 2016, 15(4): 744-754.
[5] SUN Jian-lei, SUI Xiao-lei, HUANG Hong-yu, WANG Shao-hui, WEI Yu-xia , ZHANG Zhenxian. Low Light Stress Down-Regulated Rubisco Gene Expression and Photosynthetic Capacity During Cucumber (Cucumis sativus L.) Leaf Development[J]. >Journal of Integrative Agriculture, 2014, 13(5): 997-1007.
[6] CHEN Dan, ZHANG Jin-peng, WANG Jian-sheng, YANG Xin-ming, LIU Wei-hua, GAO Ai-nong, LI . Inheritance and Availability of High Grain Number Per Spike in Two Wheat Germplasm Lines[J]. >Journal of Integrative Agriculture, 2012, 12(9): 1409-1416.
[7] ZHUJuan-juan , LIANGYin-li , WUXing , HAOWang-lin . Leaf Gas Exchange, Chlorophyll Fluorescence, and Fruit Yield in Hot Pepper (Capsicum anmuum L.) Grown Under Different Shade and Soil Moisture During the Fruit Growth Stage[J]. >Journal of Integrative Agriculture, 2012, 12(6): 927-937.
[8] ZHANG Zhan-ying, LI Jin-jie, YAO Guo-xin, ZHANG Hong-liang, DOU Hui-jing, SHI Hong-li, SUN Xingming, LI Zi-chao. Fine Mapping and Cloning of the Grain Number Per-Panicle Gene (Gnp4) on Chromosome 4 in Rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1825-1833.
No Suggested Reading articles found!