Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Ethephon mediates root morphology traits for shaping steep root architecture to enhance root anchorage in maize

Shu Mu, Mengfan Yang, Xinlong Lin, Qinghua Han, Siyu Chen, Yushi Zhang#, Mingcai Zhang#, Zhaohu Li

State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

  Highlight  

l Ethephon advances the initiation and growth rate of nodal roots and shortens the developmental duration of root whorl to promote the formation of root whorl.

l Ethephon increases root length, lateral root number and root angle, but reduces root diameter and root volume, contributed to shaping a steeper and more compact root architecture.

l Ethephon improves root anchorage, mediates root and shoot growth to shape optimal root-shoot interaction for enhancing lodging resistance and higher grain yield.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在玉米高产高效生产中,乙烯利(ETH)被广泛应用于株型塑造从而增强植株抗倒伏能力,但目前关于乙烯利如何调控根系构型从而提高根系固着强度和植株抗倒伏性的研究不足。为阐明其中的调控机制,本研究于20222023年开展了两年的夏玉米田间试验,探究了乙烯利处理对三个玉米品种根系发育、形态特征及固着强度的调控效应。结果表明,乙烯利处理可提早节根的发育起始时间、加快节根发育速率、缩短根层发育时间,诱导形成额外一层节根但未显著影响各层的节根数量。同时,乙烯利处理显著增加了玉米根系总长和侧根数量,但降低了根平均直径和根体积。此外,乙烯利处理增加了根夹角、根顶角和根底角,减小了根系最大宽度和中位宽度,从而形成了更加陡直紧凑的根系构型。在根固着强度方面,乙烯利处理分别使玉米垂直根拔力、折断角度、根系倒伏扭矩和安全因子显著提升了20.6%18%20.7%68.8%;并使根冠比提高了14.7%,使株高与垂直根拔力、地上部鲜重与垂直根拔力的比值分别降低了21.5%26.8%,以上结果表明,乙烯利可有效促进根系发育,改善地上部与地下部的协同关系。最终,乙烯利处理使玉米倒伏率显著降低73.9%,显著提高最终收获穗数、籽粒产量和收获指数。综上所述,乙烯利可通过调控根系形态特征从而塑造陡直根系、优化根冠关系,进而增强玉米的抗倒伏能力。



Abstract  

Ethephon (ETH) is widely applied to shape plant type for enhancing plant lodging resistance in maize high-yield and efficient production, however, there is limited information on how ethephon regulates root traits to mediate root anchorage strength for enhancing the lodging resistance. To clarify this, a two-year field experiment (2022 and 2023 summer maize growing seasons) was conducted to evaluate the regulatory effect of ETH application on the root development, morphological traits and anchorage strength in three maize varieties. ETH application advanced nodal root initiation, accelerated the growth rate of nodal root development, shortened the developmental duration of root whorl, and induced the formation of an additional nodal root whorl without significantly affecting nodal root number per whorl. Meanwhile, ETH application significantly increased root length and lateral root number, but reduced root diameter and root volume. Furthermore, ETH application increased root angle, top root angle and bottom root angle, while decreasing maximum and median width of root system, which facilitated the development of a steeper and more compact root system architecture. In addition, ETH application strengthened root anchorage by improving vertical root pulling resistance (VRPR), failure angle, anchorage strength and safety factor by 20.6, 18, 20.7, and 68.8%, respectively. Meanwhile, an increased root-to-shoot ratio of 14.7%, along with reductions in the ratios of plant height to VRPR and shoot fresh weight to VRPR of 21.5 and 26.8%, respectively, collectively indicated more efficient root development and improved shoot-root interaction in ETH-treated plants. Moreover, ETH effectively reduced the lodging rates by 73.9%, while increased the number of harvest ears, improved the grain yield and harvest index. Overall, ETH could mediate root morphology traits to shape steep root architecture and improve shoot–root interaction for enhancing the lodging resistance in maize. 

Keywords:  maize       ethephon       root morphology       root architecture       lodging resistance  
Online: 23 January 2026  
Fund: 

This study was supported by the National Key Research and Development Program of China (2022YFD2300901 and 2024YFD2301304) and the Beijing Municipal Science and Technology Commission Project, China (Z221100006422005)

About author:  #Correspondence Yushi Zhang, E-mail: zys_0909@126.com; Mingcai Zhang, E-mail: zmc1214@163.com

Cite this article: 

Shu Mu, Mengfan Yang, Xinlong Lin, Qinghua Han, Siyu Chen, Yushi Zhang, Mingcai Zhang, Zhaohu Li. 2026. Ethephon mediates root morphology traits for shaping steep root architecture to enhance root anchorage in maize. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.031

Bian D H, Jia G P, Cai L J, Ma Z Y, Eneji A E, Cui Y H. 2016. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Research, 185, 89–96.

Brune P F, Baumgarten A, McKay S J, Technow F, Podhiny J J. 2018. A biomechanical model for maize root lodging. Plant and Soil, 422, 397–408.

Buer C S, Sukumar P, Muday G K. 2006. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiology, 140, 1384–1396.

Chen P P, Gu X B, Li Y N, Qiao L R, Li Y P, Fang H, Yin M H, Zhou C M. 2022. Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China. Agricultural Water Management, 260, 107289.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133, 48–67.

Clark D G, Gubrium E K, Barrett J E, Nell T A, Klee H J. 1999. Root formation in ethylene-insensitive plants. Plant Physiology, 121, 53–60.

Dathe A, Postma J A, Postma-Blaauw M B, Lynch J P. 2016. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany, 118, 401–414.

FAO (Food and Agriculture Organization of the United Nations). 2021. Food and agriculture organization of the united nations agriculture databases (FAO). [2024-12-16]. https://faostatfao. org/

Flint-Garcia S A, Jampatong C, Darrah L L, McMullen M D. 2003. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science, 43, 13–22.

Fouéré A, Pellerin S, Duparque A. 1995. A portable electronic device for evaluating root lodging resistance in maize. Agronomy Journal, 87, 1020–1024.

Gao J, Liu Z, Wang P, Huang S B. 2024. Drip irrigation coupled with appropriate N input increased maize (Zea mays L.) yield and lodging resistance via optimizing root and stem trait. European Journal of Agronomy, 160, 127298.

Gong F P, Wu X L, Zhang H Y, Chen Y H, Wang W. 2015. Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 6, 805.

Grassini P, Thorburn J, Burr C, Cassman K G. 2011. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120, 142–150.

Hay R K M. 1995. Harvest index: A review of its use in plant breeding and crop physiology. Annals of Applied Biology, 126, 197–216.

Hébert Y, Guingo E, Loudet O. 2001. The response of root/shoot partitioning and root morphology to light reduction in maize genotypes. Crop Science, 41, 363–371.

Hecht V L, Temperton V M, Nagel K A, Rascher U, Postma J A. 2016. Sowing density: A neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum vulgare L.). Frontiers in Plant Science, 7, 944.

Den Herder G, Van Isterdael G, Beeckman T, De Smet I. 2010. The roots of a new green revolution. Trends in Plant Science, 15, 600–607.

Hetz W, Hochholdinger F, Schwall M, Feix G. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. The Plant Journal, 10, 845–857.

Hirel B, Le Gouis J, Ney B, Gallais A. 2007. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369–2387.

Hochholdinger F. 2016. Untapping root system architecture for crop improvement. Journal of Experimental Botany, 67, 4431–4433. 

Hochholdinger F, Yu P, Marcon C. 2018. Genetic control of root system development in maize. Trends in Plant Science, 23, 79–88.

Hostetler A N, Erndwein L, Ganji E, Reneau J W, Killian M L, Sparks E E. 2022a. Maize brace root mechanics vary by whorl, genotype and reproductive stage. Annals of Botany, 129, 657–668.

Hostetler A N, Erndwein L, Reneau J W, Stager A, Tanner H G, Cook D, Sparks E E. 2022b. Multiple brace root phenotypes promote anchorage and limit root lodging in maize. Plant, Cell & Environment, 45, 1573–1583.

Ishfaq S, Ding Y, Liang X Y, Guo W. 2025. Advancing lodging resistance in maize: Integrating genetic, hormonal, and agronomic insights for sustainable crop productivity. Plant Stress, 15, 100777.

Ivanchenko M G, Muday G K, Dubrovsky J G. 2008. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. The Plant Journal, 55, 335–347.

Jia Q M, Xu Y Y, Ali S, Sun L F, Ding R X, Ren X L, Zhang P, Jia Z K. 2018. Strategies of supplemental irrigation and modified planting densities to improve the root growth and lodging resistance of maize (Zea mays L.) under the ridge-furrow rainfall harvesting system. Field Crops Research, 224, 48–59.

Kamara A Y, Kling J G, Menkir A, Ibikunle O. 2003. Association of vertical root-pulling resistance with root lodging and grain yield in selected S1 maize lines derived from a tropical low-nitrogen population. Journal of Agronomy and Crop Science, 189, 129–135.

Kriticos D J, Reynaud P, Baker R H A, Eyre D. 2012. Estimating the global area of potential establishment for the western corn rootworm (Diabrotica virgiferavirgifera) under rain-fed and irrigated agriculture: The potential distribution of western corn rootworm. Bulletin OEPP/EPPO Bulletin, 42, 56–64.

Kong X Z, Xiong Y L, Song X Y, Wadey S, Yu S H, Rao J L, Lale A, Lombardi M, Fusi R, Bhosale R, Huang G Q. 2023. Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops. The Plant Cell, 35, 3560–3574.

Lakehal A, Bellini C. 2019. Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 165, 90–100.

Langan T D, Oplinger E S. 1987. Growth and yield of ethephon treated maize. Agronomy Journal, 79, 130–134.

Li S Y, Ma W, Peng J Y, Chen Z M. 2015. Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage. Scientia Agricultura Sinica, 19, 3952–3964. (in Chinese)

Liu B, He J X, Zeng F J, Lei J Q, Arndt S K. 2016. Life span and structure of ephemeral root modules of different functional groups from a desert system. New Phytologist, 211, 103–112.

Liu S Q, Song F B, Liu F L, Zhu X C, Xu H B. 2012. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.). Journal of Agricultural Science, 4, 182.

Liu S S, Ji X D, Zhang X. 2022. Effects of soil properties and tree species on root–soil anchorage characteristics. Sustainability, 14, 7770.

Lynch J P. 2019. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 223, 548–564.

Lynch J P. 2013. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347–357.

Lynch J P, Brown K M. 2012. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1598–1604.

Lynch J P, Chimungu J G, Brown K M. 2014. Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. Journal of Experimental Botany, 65, 6155–6166.

Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S. 2010. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 53, 1369–1373.

Novacek M J, Mason S C, Galusha T D, Yaseen M. 2013. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal, 105, 268–276.

Qi X L, Cui K H, Liu L, Huang H Y, Xu Z Y, Wang Z M, Xiong D L, Huang J L, Peng S B. 2025. Exogenous ethephon application promotes nitrogen accumulation by modifying root characters in rice seedlings. The Crop Journal, 13, 1642–1647.

Qin X L, Feng F, Li Y J, Xu S T, Siddique K H M, Liao Y C. 2016. Maize yield improvements in China: Past trends and future directions. Plant Breeding, 135, 166–176.

Ren H, Liu Z, Wang X B, Zhou W B, Zhou B Y, Zhao M, Li C F. 2025. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics. Journal of Integrative Agriculture, 24, 4195–4210.

Sanchez G M, Nejadhashemi A P, Zhang Z, Marquart-Pyatt S, Habron G, Shortridge A. 2015. Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environmental Modelling & Software, 70, 113–127.

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang T Y, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture, 22, 3394–3407.

Shao H, Shi D F, Shi W J, Ban X B, Chen Y C, Ren W, Chen F J, Mi G H. 2019. Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant and Soil, 439, 201–217.

Shekoofa A, Emam Y. 2008. Effect of water stress, plant density and plant growth regulator (ethephon) on growth and yield of maize (Zea mays L.). Journal of Agronomy, 7, 41–48.

Shi J R, Drummond B J, Habben J E, Brugire N, Weers B P, Hakimi S M, Lafitte H R, Schussler J R, Mo H, Beatty M, Zastrow-Hayes G, O’Neill D. 2019. Ectopic expression of ARGOS8 reveals a role for ethylene in root-lodging resistance in maize. The Plant Journal, 97, 378–390.

Shi J R, Habben J E, Archibald R L, Drummond B J, Chamberlin M A, Williams R W, Lafitte H R, Weers B P. 2015. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiology, 169, 266–282.

Smith S, De Smet I. 2012. Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1441–1452.

Sparks E E. 2023. Maize plants and the brace roots that support them. New Phytologist, 237, 48–52.

Stamp P, Kiel C. 1992. Root morphology of maize and its relationship to root lodging. Journal of Agronomy and Crop Science, 168, 113–118.

Steffens B, Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology, 170, 603–617.

Stepanova A N, Alonso J M. 2019. From ethylene-auxin interactions to auxin biosynthesis and signal integration. The Plant Cell, 31, 1393–1394.

Sun N, Chen X F, Zhao H X, Meng X M, Bian S F. 2022. Effects of plant growth regulators and nitrogen management on root lodging resistance and grain yield under high-density maize crops. Agronomy (Basel), 12, 2892.

Sun S X, Dai J Y. 1989. Effect of nitrogen, phosphate and potash fertilizers on lodging and yield in maize. Scientia Agricultura Sinica, 22, 28–33. (in Chinese)

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.

Torres-Martínez H H, Rodríguez-Alonso G, Shishkova S, Dubrovsky J G. 2019. Lateral root primordium morphogenesis in angiosperms. Frontiers in Plant Science, 10, 206.

Trachsel S, Kaeppler S M, Brown K M, Lynch J P. 2013. Maize root growth angles become steeper under low N conditions. Field Crops Research, 140, 18–31.

Wang X L, Liu F, Zhao N, Du X, Yin P J, Li T L, Lan T Q, Feng D J, Kong F L, Yuan J C. 2025. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study. Journal of Integrative Agriculture, 24, 4573–4587.

Wang Z, Liu Z, Liu R X, Zhou B Y, Wang X B, Ding Z S, Zhang R H, Li C F, Zhao M. 2025. Ethephon combined with synergist promoted grain formation by improving photosynthetic performance and floret development of maize. Field Crops Research, 334, 110140.

Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. 2018. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 218, 88–96.

White P J, George T S, Dupuy L X, Karley A J, Valentine T A, Wiesel L, Wishart J. 2013. Root traits for infertile soils. Frontiers in Plant Science, 4, 193.

Wiersma J J, Dai J, Durgan B R. 2011. Optimum timing and rate of trinexapac-ethyl to reduce lodging in spring wheat. Agronomy Journal, 103, 864–870.

Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71–79.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and-density maize. Journal of Integrative Agriculture, 16, 2717–2725.

Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. 2020. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistance maize cultivars. European Journal of Agronomy117, 126073.

Ye D L, Zhang Y S, Al-Kaisi M M, Duan L S, Zhang M C, Li Z H. 2016. Ethephon improved stalk strength associated with summer maize adaptations to environments differing in nitrogen availability in the North China Plain. The Journal of Agricultural Science, 154, 960–977.

Yin S Y, Li P C, Xu Y, Xue L, Hao D R, Liu J, Yang T T, Yang Z F, Xu C W. 2018. Logistic model-based genetic analysis for kernel filling in a maize RIL population. Euphytica, 214, 86.

York L M, Nord E A, Lynch J P. 2013. Integration of root phenes for soil resource acquisition. Frontiers in Plant Science, 4, 355.

Zhang H X, Ali S, Chen Y, Yang L Y, Pang G, Assal M E, Shaik M R. 2025. Irrigation management practices with novel plant growth regulators improve root growth, root lodging resistance and maize productivity under semi-arid regions. Field Crops Research, 333, 110097.

Zhang P, Gu S C, Wang Y Y, Yang R M, Yan Y, Zhang S, Sheng D C, Cui T, Huang S B, Wang P. 2021. Morphological and mechanical variables associated with lodging in maize (Zea mays L.). Field Crops Research, 269, 108178.

Zhang P, Wang Y Y, Sheng D C, Zhang S, Gu S C, Yan Y, Zhao F C, Wang P, Huang S B. 2023. Optimizing root system architecture to improve root anchorage strength and nitrogen absorption capacity under high plant density in maize. Field Crops Research, 303, 109109.

Zhang P, Yan Y, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. 2022. Lodging resistance in maize: A function of root–shoot interactions. European Journal of Agronomy, 132, 126393.

Zhang Q, Zhang L Z, Evers J, Werf W, Zhang W Q, Duan L S. 2014. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Research, 164, 82–89.

Zhang W Q, Yu C X, Zhang K, Zhou Y Y, Tan W M, Zhang L Z, Li Z H, Duan L S. 2017. Plant growth regulator and its interactions with environment and genotype affect maize optimal plant density and yield. European Journal of Agronomy, 91, 34–43.

Zhang Y S, Wang Y B, Ye D L, Wang W, Qiu X M, Duan L S, Li Z H, Zhang M C. 2019. Ethephon improved stalk strength of maize (Zea mays L.) mainly through altering internode morphological traits to modulate mechanical properties under field conditions. Agronomy (Basel), 9, 186.

Zhang Y S, Wang Y B, Ye D L, Xing J P, Duan L S, Li Z H, Zhang M C. 2020. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. Plant Science, 290, 110196.

Zheng Z G, Wang B B, Zhuo C Y, Xie Y R, Zhang X M, Liu Y J, Zhang G S, Ding H, Zhao B B, Tian M Q, Xu M Y, Kong D X, Shen R X, Liu Q, Wu G X, Huang J F, Wang H Y. 2023. Local auxin biosynthesis regulates brace root angle and lodging resistance in maize. New Phytologist, 238, 142–154.

Zhu Y P, Wang S, Li Y H, Wei D, Luo N, Wang P, Meng Q F. 2023. Enhancing maize yield through understanding the novel shoot-root interaction in morphology among hybrids with dense planting. Field Crops Research, 302, 109107.

[1] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[2] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[3] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[4] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[5] Xin Zhao, Hai Liang, Danna Chang, Jiudong Zhang, Xingguo Bao, Heng Cui, Weidong Cao. Maize–green manure intercropping improves maize yield and P uptake by shaping the responses of roots and soil [J]. >Journal of Integrative Agriculture, 2026, 25(1): 313-325.
[6] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[7] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[8] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[9] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[10] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[11] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[12] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[13] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[14] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[15] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
No Suggested Reading articles found!