Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Maize-green manure intercropping improves maize yield and P uptake by shaping the responses of roots and soil

Xin Zhao1, Hai Liang2, Danna Chang1, Jiudong Zhang3, Xingguo Bao3, Heng Cui3, Weidong Cao1*

1 State Key Laboratory of Efficient Utilization of Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2 Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
3 Soil and Fertilizer and Water-saving Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730030, China


 Highlights 

l Maize-green manure intercropping increases maize yield and grain P uptake

l Intercropping increases the maize root length density and organic acid release rate

l Intercropping increases the soil phosphatase activity and reduces soil pH

l Intercropping converts non-labile P to mod-labile P and enriches beneficial bacteria in the soil 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

绿肥对于改善土壤质量和养分吸收至关重要。随着磷资源的逐渐枯竭,人们越来越关注绿肥在种植系统如玉米-绿肥间作中的作用,以寻找提高土壤磷利用率的可能途径。本研究基于一项始于 2009 年的玉米-绿肥间作的田间定位试验,旨在探究间作绿肥提高玉米产量和磷吸收的效果及机制。试验采用了玉米与三种绿肥(毛叶苕子,针叶豌豆,甜豌豆间作(HVT, NPT, SPT)单独种植玉米(CK),共计4个处理。2020-2023 年间,间作处理在 2020 年和 2021 年提高了玉米产量,尤其是 HVT 理,与 CK 相比,分别增产 13.7%1.96 / 公顷)和 13.0%2.13 / 公顷)。2020 年、2021 年和 2023 年,间作处理下玉米籽粒的磷积累量显著高于 CK,四年间平均增幅为 10.6%NPT 5.2%SPT 10.8%HVT 15.9%)。间作促进了玉米根长密度的增加和有机酸释放速率的提高。与其他处理相比,HVT 对土壤性质的改变更为明显,表层土壤(0 - 15 cm)中的酸性磷酸酶和碱性磷酸酶活性分别提高了 29.8% 38.5%,同时土壤 pH 值比 CK处理pH = 8.44)降低了 0.37 个单位。间作处理促进了非活性磷向中度活性磷的转化,并刺激了表层土壤中细菌的生长。与 CK处理相比,以积累多聚磷酸盐而闻名的芽单胞菌门(Gemmatimonadota)和作为生物活性化合物重要来源的放线菌门(Actinobacteriota)的相对丰度在间作处理中显著增加,尤其是在 HVT SPT 处理中。偏最小二乘路径模型(PLS - PM)分析表明,间作通过调节玉米根系形态和生理,促进了土壤磷的活化及有益细菌的富集。我们的研究结果表明,玉米-绿肥间作优化了根系性状、土壤性质和细菌组成,有助于提高玉米的产量和磷吸收,为作物可持续生产提供了一种有效策略。



Abstract  

Green manuring is essential for improving soil quality and nutrient uptake. With the gradual depletion of phosphorus (P) resources, more attention is being paid to the role of green manures in cultivation systems, such as maize-green manure intercropping, to find possible pathways for enhancing soil P utilization. A maize-green manure intercropping experiment was started in 2009 to investigate the effects and mechanisms for enhancing P uptake and yield in maize. Three species of green manures (HV: hairy vetch; NP: needle leaf pea; SP: sweet pea) and a sole maize treatment (CK) were used, resulting in four treatments (CK, HVT, NPT, and SPT) in the experiment. During 2020-2023, the intercropping treatments enhanced maize yields in 2020 and 2021, particularly in the HVT treatment with increases of 13.7% (1.96 t ha-1) and 13.0% (2.13 t ha-1) compared with CK, respectively. Grain P accumulation of maize was significantly higher in the intercropping treatments than CK in 2020, 2021, and 2023, and with an average increase of 10.6% over the four years (5.2% for NPT, 10.8% for SPT and 15.9% for HVT) compared with CK. Intercropping promoted maize growth with a greater root length density and a higher organic acid release rate. HVT changed the soil properties more dramatically than the other treatments, with increases in the acid phosphatase and alkaline phosphatase activities of 29.8 and 38.5%, respectively, in the topsoil (0-15 cm), while the soil pH was reduced by 0.37 units compared to CK (pH=8.44). Intercropping treatments facilitated the conversion of non-labile P to mod-labile P and stimulated the growth of soil bacteria in the topsoil. Compared with CK, the relative abundance of Gemmatimonadota, known for accumulating polyphosphate, and Actinobacteriota, a prominent source of bioactive compounds, increased significantly in the intercropping treatments, especially in HVT and SPT. A PLS-PM analysis showed that intercropping promoted soil P mobilization and the enrichment of beneficial bacteria by regulating maize root morphology and physiology. Our results highlight that maize-green manure intercropping optimizes root traits, soil properties and bacterial composition, which contribute to greater maize P uptake and yield, providing an effective strategy for sustainable crop production.  

Keywords:  green manure       root morphology        root exudate        soil P fractions        soil phosphatases        intercropping  
Online: 24 February 2025  
Fund: 

This study was supported financially by the National Key Research & Development Program of China (2021YFD1700200), the earmarked fund for China Agriculture Research System-Green manure (CARS-22), the Fundamental Research Funds for Central Non-profit Scientific Institution, China (1610132022013), the National Natural Science Foundation of China (32402686), the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, and the China National Crop Germplasm Resources Platform for Green Manure (NICGR-2024-19).

Cite this article: 

Xin Zhao, Hai Liang, Danna Chang, Jiudong Zhang, Xingguo Bao, Heng Cui, Weidong Cao. 2025. Maize-green manure intercropping improves maize yield and P uptake by shaping the responses of roots and soil. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.051

Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management, 321, 115859.

Almeida D S, Rosolem C A. 2016. Ruzigrass grown in rotation with soybean increases soil labile phosphorus. Agronomy Journal, 108, 2444–2452.

An R, Yu R P, Xing Y, Zhang J D, Bao X G, Lambers H, Li L. 2023. Intercropping efficiently utilizes phosphorus resource in soil via different strategies mediated by crop traits and species combination. Plant and Soil, 497, 705–725.

Ansari M A, Choudhury B U, Layek J, Das A, Lal B, Mishra V K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil and Tillage Research, 218, 105318.

Berendsen R L, Pieterse C M J, Bakker P A. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478–486.

Bergkemper F, Scholer A, Engel M, Lang F, Kruger J, Schloter M, Schulz S. 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology, 18, 1988–2000.

Bohm W. 1979. Methods of Studying Root Systems. Springer, New York.

Bolyen E, Rideout J R, Dillon M R., Bokulich N A, Abnet C, Al-Ghalith G A, Caporaso J G. 2018. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints, 6, e27295v2.

Brookes P C, Powlson D S, Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319–329.

Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schoeb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, et al. 2015. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107–117.

Callahan B, Mcmurdie P J, Rosen M J, Han A W, Johnson A J, Holmes S P. 2016. Dada2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13, 581–583.

Chai Y N, Schachtman D P. 2022. Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 27, 80–91.

Chen X D, Wang Y, Wang J H, Condron L M, Guo B, Liu J L, Qiu G Y, Li H. 2023. Impact of ryegrass cover crop inclusion on soil phosphorus and pqqC- and phoD-harboring bacterial communities. Soil and Tillage Research, 234, 105823.

Cong W F, Suriyagoda L D B, Lambers H. 2020. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends in Plant Science, 25, 967–975.

Damon P M, Bowden B, Rose T, Rengel Z. 2014. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biology and Biochemistry, 74, 127–137.

Dell’Amico E, Cavalca L, Andreoni V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 40, 74–84.

Dubey A, Malla M A, Khan F, Chowdhary K, Yadav S, Kumar A, Khan M L. 2019. Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation, 28, 2405–2429.

Duchene O, Vian J F, Celette F. 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 240, 148–161.

Eichler-Lobermann B, Kohne S, Kowalski B, Schnug E. 2008. Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. Journal of Plant Nutrition, 31, 659–676.

Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur M P, Mommer L. 2017. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7, 1–8.

Filippelli G M. 2008. The global phosphorus cycle: Past, present, and future. Elements, 4, 89–95.

Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez M X, Barea J M. 2010. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.

Gao Y, Duan A, Qiu X, Liu Z, Sun J, Zhang J, Wang H. 2010. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 98, 199–212.

Hansen V, Muller-Stover D, Comez-Munoz B, Oberson A, Magid J. 2022. Differences in cover crop contributions to phosphorus uptake by ryegrass in two soils with low and moderate P status. Geoderma, 426, 116075.

Hallama M, Pekrun C, Lambers H, Kandeler E. 2019. Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 434, 7–45.

Haling R E, Brown L K, Stefanski A, Kidd D R, Ryan M H, Sandral G A, George T S, Lambers H, Simpson R J. 2018. Differences in nutrient foraging among Trifolium subterraneum cultivars deliver improved P-acquisition efficiency. Plant and Soil, 424, 539–554.

Haynes R J, Mokolobate M S. 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59, 47–63.

Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil phosphorus fraction sinduced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.

Marschner H. 2012. Marschner’s Mineral Nutrition of Higher Plants. Amsterdam, Netherlands: Academic Press.

Jin K, Sleutel S, Buchan D, De Neve S, Cai D, Gabriëls D, Jin J. 2009. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research, 104, 115–120.

Johnson C M, Ulrich A. 1959. Analytical methods for use in plant analysis. Bulletin of the California Agricultural Experiment Station, 767, 25–78.

Jones D, Nguyen C, Finlay D R. 2009. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 321, 5–33.

Kim N, Zabaloy M C, Guan K, Villamil M B. 2020. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biology and Biochemistry, 142, 107701.

King W L, Yates C F, Guo J, Fleishman S M, Trexler R V, Centinari M, Bell T H, Eissenstst D M. 2021. The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering. Communications Biology4, 1–9.

Kumar A, Dubey A. 2020. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 24, 337–352.

Lambers H. 2022. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17–42.

Lauber C L, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.

Li C J, Lambers H, Jing J Y, Zhang C C, Bezemer M, Klironomos J, Cong W F, Zhang F S. 2024. Belowground cascading biotic interactions trigger crop diversity benefits. Trends in Plant Science, 29, 1191–1202. 

Li L, Sun J, Zhang F, Guo T, Bao X, Smith F A, Smith S E. 2006. Root distribution and interactions between intercropped species. Oecologia, 147, 280–290.

Li L, Tang C X, Rengel Z, Zhang F S. 2003. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant and Soil, 248, 297–303

Li L, Tilman D, Lambers H, Zhang F S. 2014. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist, 203, 63–69.

Li S, Li L, Zhang F, Tang C. 2004. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 94, 297–303.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, et al. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943–950.

Liao D, Zhang C C, Lambers H, Zhang F S. 2021. Changes in soil phosphorus fractions in response to long‐term phosphate fertilization under sole cropping and intercropping of maize and faba bean on a calcareous soil. Plant and Soil, 463, 589–600.

Lynch J P. 2015. Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant, Cell and Environment, 38, 1775–1784.  

Lyu Y, Tang H, Li H, Zhang F, Rengel Z, Whalley W R, Shen J. 2016. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 7, 1939.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal, 17, 1–10.

Muhammad I, Wang J, Sainju U M, Zhang S, Zhao F, Khan A. 2021. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma, 381, 114696.

Nakayama Y, Wade J, Margenot A J. 2021. Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation. Geoderma, 401, 115279.

Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. The ISME Journal, 11, 2691–2704.

Nobile C M, Bravin M N, Becquer T, Paillat J M. 2020. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 239, 124709.

Ochiai N, Powelson M L, Crowe F J, Dick R P. 2008. Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biology and Fertility of Soils, 44, 1013–1023.

Olanrewaju O S, Babalola O O. 2019. Streptomyces: Implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology, 103, 1179–1188.

Olsen S, Khasawneh F. 1980. Use and limitations of physical-chemical criteria for assessing the status of phosphorus in soils. In: Khasawneh F, Sample E, Kamprath E, eds., The Role of Phosphorus in Agriculture. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. pp. 361–404.

Qiao J, Zhu Y, Jia X, Huang L, Shao M. 2018. Vertical distribution of soil total nitrogen and soil total phosphorus in the critical zone on the Loess Plateau, China. Catena, 166, 310–316.

Pang G, Cai F, Li R X, Zhao Z, Li R, Gu X L, Shen Q R, Chen W. 2017. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant and Soil, 416, 181–192.

Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan M H, Ranathunge K, Siddique K H M. 2018. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytologist, 219, 518–529.

Palaniyandi S A, Yang S H, Zhang L, Suh J W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621–9636.

Postma J A, Dathe A, Lynch J P. 2014. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology, 166, 590–602.

Prosser J I, Bohannan B J M, Curtis T P, Ellis R J, Firestone M K, Freckleton R P, Green J L, Green L E, Killham K, Lennon J J, Osborn A M, Solan M, van der Gast C J, Young J P W. 2007. The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 5, 384–392.

Redel Y, Staunton S, Duran P, Gianfreda L, Rumpel C, Mora M. 2019. Fertilizer P uptake determined by soil P fractionation and phosphatase activity. Journal of Soil Science and Plant Nutrition, 19, 166–174.

Richardson A E, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Ryan M H, Veneklaas E J, Lambers H, Oberson A, Culvenor R A, Simpson R J. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121–156.

Rodrigues M, Withers P J A, Soltangheisi A, Vargas V, Holzschuh M, Pavinato P S. 2021. Tillage systems and cover crops affecting soil phosphorus bioavailability in Brazilian Cerrado Oxisols. Soil and Tillage Research, 205, 104770.

Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F. 2013. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany, 64, 1181–1192.

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997–1005.

Simpson R J, Oberson A, Culvenor R A, Ryan M H, Veneklaas E J, Lambers H, Lynch J P, Ryan R R, Delhaize E, Smith F A. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil, 349, 89–120.

Sun B, Gao Y, Wu X, Ma H, Zheng C, Wang X, Zhang H, Li Z, Yang H. 2019. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 447, 117–133.

Sun R B, Zhang X X, Guo X S, Wang D Z, Chu H Y. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9–18.

Tang C, Yu Q. 1999. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant and Soil, 215, 29–38.

Tang H L, Shen J B, Zhang F S, Rengel Z. 2013. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Science China Life Science, 56, 313–323.

Tiessen H, Moir J O. 1993. Characterization of available P by sequential extraction. Soil Sampling Methods of Analysis, 7, 5–229.

Tonitto C, David M B, Drinkwater L E. 2006. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agriculture Ecosystems and Environment, 112, 58–72.

Tsiafouli M A, Thebault E, Sgardelis S P, de Ruiter P C, van der Putten W H, Birkhofer K, Hemerik L, de Vries F T, Bardgett R D, Brady M V, Bjornlund L, Jorgensen H B, Christensen S, Hertefeldt T D, Hotes S, Gera H W H, Frouz J, Liiri M, Mortimer S R, Setala H, et al. 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21, 973–985.

Vanzolini J I, Galantini J A, Martínez J M, Suner L. 2017. Changes in soil pH and phosphorus availability during decomposition of cover crop residues. Archives of Agronomy and Soil Science, 63, 1864–1874.

de Vries F T, Griffiths R I, Knight C G, Nicolitch O, Williams A. 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 368, 270–274.

Wang L Y, Rengel Z, Zhang K, Jin K M, Zhang L, Cheng L Y, Zhang F S, Shen J B. 2022. Ensuring future food security and resource sustainability: Insights into the rhizosphere. iScience, 25, 104168.

Wang Q, Wang N, Wang Y, Wang Q, Duan B. 2017. Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus×euramericana (Dode) Guinier.). Plant and Soil, 421, 123–135.

Wang Y, Huang Q, Gao H, Zhang R Q, Yang L, Guo Y, Li H K, Awasthi M K, Li G C, 2021. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere, 275, 130093.

Wang Y, Lambers H. 2019. Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant and Soil, 447, 135–156.

Wang Y, Liu L, Tian Y, Wu X, Yang J, Luo Y, Zhao Z. 2020. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover. Soil and Tillage Research, 202, 104666.

Wen Z, Li H, Shen J, Rengel Z. 2017. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 416, 377–389.

Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan M H, Lambers H, Shen J, 2019. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 223, 882–895.

Xing Y, Yu R P, An R, Yang N, Wu J P, Ma H Y, Zhang J D, Bao X G, Lambers H, Li L. 2023. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long-term intercropping. Field Crops Research, 293, 108854.

Xu S T, Zhang W L, Goodwin P H, Wang Y F, Zheng S J, Li X D. 2024. Effect of cover crop on soil fertility and bacterial diversity in a banana plantation in southwestern China. Soil and Tillage Research, 240, 106092.

Yan F, Hütsch B, Schubert S. 2006. Soil-pH dynamics after incorporation of fresh and oven-dried plant shoot materials of faba bean and wheat. Journal of Plant Nutrition and Soil Science, 169, 506-508.

Yan F, Schubert S. 2000. Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant and Soil, 220, 279–287.

Yang K, Zhu J, Gu J, Yu L, Wang Z. 2014. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 72, 435–442.

Yang Z Y, Zhang Y P, Wang Y Z, Zhang H F, Zhu Q R, Yan B J, Fei J C, Rong J W, Luo G W. 2022. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 287, 108666.

Yu X, Keitel C, Dijkstra F A. 2021. Global analysis of phosphorus fertilizer use efficiency in cereal crops. Global Food Security, 29, 100545.

Zhang D S, Zhang C C, Tang H L, Li H G, Zhang F S, Rengel Z, Whalley W R, Davies W J, Shen J B. 2016. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 209, 823–831.

Zhang K, Zheng D F, Gu Y, Xu J, Wang M Y, Mu B, Wen S J, Tang T, Rengel Z, Shen J B. 2024. Utilizing soil organic phosphorus for sustainable crop production: Insights into the rhizosphere. Plant and Soil, 498, 57–75.

Zhang P, Chen X, Wei T, Yang Z, Jia Z, Yang B, Han Q, Ren X. 2016. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil and Tillage Research, 160, 65–72. 

Zhang R, Vivanco J M, Shen Q. 2017. The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 37, 8–14

Zhang S, Li S M, Meng L B, Liu X D, Zhang Y H, Zhao S C, Zhao H B. 2024. Root exudation under maize/soybean intercropping system mediates the arbuscular mycorrhizal fungi diversity and improves the plant growth. Frontiers in Plant Science, 15, 1375194.

Zhang Y, Chen F, Li L, Chen Y, Liu B, Zhou Y, Yuan L, Zhang F, Mi G. 2012. The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems. Science China Life Science, 55, 993–1001.

No related articles found!
No Suggested Reading articles found!