Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing sowing method and density of broomcorn millet (Panicum miliaceum L.) to improve lodging resistance and yield

Xiaoyan Liang1, 2, Jiajia Li1, 3, Kuihua Yi1, Yinyu Gu1, 3, Meng Li1, Chuanjie Chen1, Junlin Li1, 3, Rao Fu1#, Jialei Zhang4#, Shubo Wan4#

1 Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265503, China

2 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying  257345, China

3 Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding/Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265503, China

4 Shandong Provincial Key Laboratory of Field Crop Physiology, Ecology, and Efficient Production (Under Construction)/Shandong International Cooperation Laboratory for Agricultural Germplasm Resource Innovation/Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China

 Highlights 

l Peanut intercropping with short-stemmed quinoa variety has lower underground competition intensity.

l Early-maturing quinoa variety enhances the “recovery growth effect” of intercropped peanuts.

l Short-stemmed and early-maturing varieties is more beneficial for the growth and yield of intercropped peanuts.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

盐碱藜麦/花生间作是一种具有发展潜力的新型种植模式,但不同藜麦品种差异较大,目前关于适合与花生间作的藜麦品种的研究十分匮乏。本研究于2021—2022 年开展大田试验,设置了矮秆早熟型(PSE)、中秆中熟型(PMM)和高秆晚熟型(PTL)三个不同藜麦品种分别与花生间作的处理,研究比较不同藜麦品种对花生根系分布、土壤含水量(SMC)、电导率(EC)、氮磷钾吸收及荚果产量的影响。结果表明,PSE 处理的花生荚果产量、荚果干重、生物量及百果重均为最高,PMM 处理次之,PTL 处理最低;PSE 处理的花生荚果产量比PMM PTL 处理高 6.03%~21.16%。藜麦与花生共生期,PSE和PMM 处理下花生植株的主茎高、分枝数、叶面积、干物质量及养分吸收量均显著高于PTL;而 PSE PMM 处理之间则无显著差异。花生单独生长期,PMM 处理的花生植株性状(主茎高除外)及养分吸收量均低于 PSE 处理,PTL 处理表现最差,这与花生根长密度(RLD)的变化趋势一致。同时,与 PMM PTL 处理相比,PSE 处理10 cm 土层以下的土壤含水量、根际土壤养分含量(K+NO3NH4+PO43− TOC及土壤电导率均最高。花生根长密度、土壤含水量、土壤电导率及根际土壤养分含量均与藜麦根长密度呈负相关。综上所述,在盐碱地藜麦/花生间作模式,选用矮秆早熟型藜麦品种与花生间作更有利于提高花生产量。



Abstract  

Quinoa–peanut relay intercropping is a potential practice in saline-alkali land; however, quinoa varieties exhibit considerable variability, and a paucity of information regarding suitable varieties of quinoa for intercropping with peanuts. A field experiment with three intercropped peanut treatments (PSE, PMM, and PTL) with quinoa varieties of short-stemmed and early-maturing (QSE), medium-stemmed and medium-maturing (QMM), and tall-stemmed and late-maturing (QTL) was conducted in 2021–2022 to elucidate the effects of quinoa varieties on the root distribution, soil moisture content (SMC), electrical conductivity (EC), nutrient (N, P, and K) absorption, and pod yield of peanuts. The results showed the pod yield, pod dry weight, biomass, and 100-fruit weight of peanut under PSE were the highest, followed by PMM, and PTL was the lowest. The pod yield of PSE was 6.03–21.16% higher than that of PMM and PTL in 2021 and 2022. In the co-growth period of quinoa and peanut (CGP), the main stem height, branch number, leaf area (LA), dry matter weight, and nutrients absorption of peanut plants under PSE and PMM were all significantly higher than PTL; but no difference was observed between PSE and PMM. In the solo-growth period of peanut (SGP), the plant traits (except for the main stem height) and nutrient absorption of peanut under PMM were worse than PSE, and PTL was the worst, which was consistent with the variation of root length density (RLD) of peanuts. Meanwhile, PSE had the highest SMC at soil depths below 10 cm, nutrient contents in rhizosphere soil (K+, NO3, NH4+, PO43−, and TOC), also EC and Na+ contents compared with PMM and PTL. The RLD of peanut, SMC, EC, and nutrient contents in rhizosphere soil of peanuts were negatively correlated with the RLD of quinoa. Therefore, intercropping peanut with short-stemmed and early-maturing quinoa variety is more conducive to increasing peanut yield in saline-alkali soil.

Keywords:  peanut       quinoa variety       relay intercropping       root length density       soil nutrient absorption  
Online: 14 January 2026  
Fund: 

This work was supported by the National Natural Science Foundation of China (32201917), the Natural Science Foundation of Shandong Province, China (ZR2022QC124 and ZR2024QC076), the National Center of Technology Innovation for Comprehensive Utilization of Saline–Alkali Land (GYJ2023004), and the Weifang Science and Technology Development Plan (Agricultural Key Technologies), China (2024ZJ1181).

About author:  Xiaoyan Liang, E-mail: liangxiaoyan1001@163.com; #Correspondence Rao Fu, E-mail: frao2017@163.com; Jialei Zhang, E-mail: zhangjialei19@163.com; Shubo Wan, E-mail: wansb@saas.ac.cn

Cite this article: 

Xiaoyan Liang, Jiajia Li, Kuihua Yi, Yinyu Gu, Meng Li, Chuanjie Chen, Junlin Li, Rao Fu, Jialei Zhang, Shubo Wan. 2026. Optimizing sowing method and density of broomcorn millet (Panicum miliaceum L.) to improve lodging resistance and yield. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.017

Adolf V I, Jacobsen S E, Shabala S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany92, 43–54.

Chapman H D, Parker F. 1961. Methods of analysis for soil, plant, and water. Journal of Plant Nutrition, 22, 121–128.

Chen G, Kong X, Gan Y, Zhang R, Feng F, Yu A, Zhao C, Wan S, Chai Q. 2018. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping. Scientific Reports, 8, 10494.

Chen X, Chen Y, Zhang W, Zhang W, Wang H, Zhou Q. 2023. Response characteristics of root to moisture change at seedling stage of Kengyilia hirsuta. Frontiers in Plant Science, 13, 1052791.

Christina M, Chevalier L, Viaud P, Schwartz M, Chetty J, Ripoche A, Versini A, Jourdan C, Auzoux S, Mansuy A. 2025. Intercropping and weed cover reduce sugarcane roots colonization in plant crops as a result of spatial root distribution and the co-occurrence of neighboring plant species. Plant and Soil, 506,3955.

Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Gougerdchi V, Hamedpour-Darabi M, Bagheri N, Sharma R, Vetukuri R R, Astatkie T, Dell B. 2024. Quinoa: A promising crop for resolving the bottleneck of cultivation in soils affected by multPMMe environmental abiotic stresses. Plants (Basel), 13, 2117.

Dhima K V, Lithourgidis A S, Vasilakoglou I B, Dordas C A. 2007. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100, 249–256.

Dick W A, Cheng L, Wang P. 2000. Soil acid and alkaline phosphtase activity as PH ajustment indicators. Soil Biology and Biochemistry, 32, 1915–1919.

Dong H Z, Kong X Q, Luo Z, Li W J, Xin C S. 2010. Unequal salt distribution in the root zone increases growth and yield of cotton. European Journal of Agronomy, 33, 285–292.

Dong Q, Zhao X, Sun Y, Zhou D, Lan G, Pu J, Feng C, Zhang H, Shi X, Liu X, Zhang J, Sun Z, Yu H. 2024. Border row effects improved the spatial distributions of maize and peanut roots in an intercropping system, associated with improved yield. Frontiers in Plant Science, 15, 1414844.

Engbersen N, Stefan L, Brooker RW, Schöb C. 2022. Using plant traits to understand the contribution of biodiversity effects to annual crop community productivity. Ecological Applications, 32, e02479.

Fu Z, Chen P, Zhang X, Du Q, Zheng B, Yang H, Luo K, Lin P, Li Y, Pu T, Wu Y, Wang X, Yang F, Liu W, Song C, Yang W, Yong T. 2023. Maize-legume intercropping achieves yield advantages by improving leaf functions and dry matter partition. BMC Plant Biology, 23, 438.

Gebre M G, Earl H J. 2021. Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 12, 581127.

Guerchi A, Mnafgui W, Jabri C, Merghni M, Sifaoui K, Mahjoub A, Ludidi N, Badri M. 2024. Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions. BMC Plant Biology, 24, 158.

Hassan A, Dresbøll D B, Rasmussen C R, Lyhne-Kjrbye A, Nicolaisen M H, Stokholm M S, Thorup-Kristensen K. 2019. Root distribution in intercropping systems–a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 67, 15–28.

Hu F L, Gan Y T, Cui H Y, Zhao C, Feng F X, Yin W, Chai Q. 2016. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. European Journal of Agronomy, 74, 9–17.

Hu S, Liu L, Zuo S, Ali M, Wang Z. 2020. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. Journal of Cleaner Production, 266, 121991.

Karlova R, Boer D, Hayes S, Testerink C. 2021. Root plasticity under abiotic stress. Plant Physiology, 187, 1057–1070. 

Li C J, Hoffland E, Kuyper T, Yu Y, Li H G, Zhang C C, Zhang F S, van der Werf W. 2020. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy113, 125987.

Li L, Sun J, Zhang F, Guo T, Bao X, Smith F A, Smith S E. 2006. Root distribution and interactions between intercropped species. Oecologia147, 280–290.

Li L, Zhang L Z, Zhang F S. 2013. Crop mixtures and the mechanisms of over yielding. In: Levin S A, ed., Encyclopedia of Biodiversity, 2nd ed. Waltham, MA: Academic Press. pp. 382–395.

Liang J, Shi W. 2021. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Research, 262, 108027.

Liang X Y, Fu R, Gu Y Y, Yi K H, Li M, Chen C J, Zhang H Y, Li J L, Ma L, Song Y J, Wang X Y, Zhang J L, Wan S B, Zhang H. 2025. Quinoa-peanut relay intercropping promotes peanut productivity through the temporal optimization of soil physicochemical properties and microbial community composition in saline soil. Plants, 14, 2102.

Liu X Z, Manevski K, Liu F, Andersen M N. 2022. Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes. Agricultural Water Management, 273, 107905.

Liu Y X, Sun J H, Zhang F F, Li L. 2020. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 447, 39–53. 

Luo K, Yuan X, Zuo J, Xue Y, Zhang K, Chen P, Li Y, Lin P, Wang X, Yang W, Flexas J, Yong T. 2024. Light recovery after maize harvesting promotes soybean flowering in a maize–soybean relay strip intercropping system. Plant Journal, 118, 2188–2201. 

Mmolawa K, Or D. 2000. Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 222, 163–190. 

Nowak V, Du J, Charrondière U R. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54. 

Nwokoro C C, Kreye C, Necpalova M, Adeyemi O, Barthel M, Pypers P, Hauser S, Six J. 2022. Cassava-maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics, and yields of component crops. Field Crops Research, 283, 108550. 

Oburger E, Schmidt H, Staudinger C. 2022. Harnessing belowground processes for sustainable intensification of agricultural systems. Plant and Soil478, 177–209.

Page A L, Miller R H, Keeney D R. 1982. Methods of Soil Analysis-Chemical and Microbiology Properties. American Society of Agronomy, Madison, WI, USA. p. 1159.

Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha R K, Tanna B, Yadav S, Mishra A, Varshney R K, Siddique K H M. 2022. Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. International Journal of Molecular Sciences, 23, 660.

Peng X, Ren J, Chen P, Yang L, Luo K, Yuan X, Lin P, Fu Z, Li Y, Li Y, Yang W, Yong T. 2024. Effects of soil physicochemical environment on the plasticity of root growth and land productivity in maize soybean relay strip intercropping system. Journal of the Science of Food and Agriculture104, 3865–3882.

Qiang B, Fan Z, Tang N, Asad M S, Timbang B C, Ren X L, Chen X L. 2024. Improving the productivity of intercropping through above and below ground separation: A case study on photosynthetic characteristics and root distribution. Industrial Crops and Products, 222(Part1), 15.

Qin F, Xin Z, Wang J, Zhang J, Yang J, Guo F, Tang Z, Ci D. 2024. Peanut production in saline-alkali land of Yellow River Delta: Influence of spatiotemporal changes of meteorological conditions and soil properties. BMC Plant Biology, 24, 1029.

Raza M A, Bin Khalid M H, Zhang X, Feng L Y, Khan I, Hassan M J, Ahmed M, Ansar M, Chen Y K, Fan Y F, Yang F, Yang W. 2019. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 9, 4947.

Raza M A, Din A M U, Zhiqi W, Gul H, Ur Rehman S, Bukhari B, Haider I, Rahman M H U, Liang X, Luo S, El Sabagh A, Qin R, Ma Z M. 2023. Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems. Scientific Reports, 13, 16916.

Ren Y Y, Wang X L, Zhang S Q, Palta J A, Chen Y L. 2017. Influence of spatial arrangement in maize–soybean intercropping on root growth and water use efficiency. Plant and Soil415, 131–144. 

Rojas W. 2003. Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Reviews International, 19, 9–23.

Shi X, Zhao X, Ren J, Dong J, Zhang H, Dong Q, Jiang C, Zhong C, Zhou Y, Yu H. 2021. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Frontiers in Microbiology, 12, 678250.

Stefan L, Engbersen N, Schöb C. 2022. Rapid transgenerational adaptation in response to intercropping reduces competition. Elife, 11, e77577.

Stomph T J, Dordas C, Baranger A, de Rijk J, Dong B, Evers J, Gu C, Li L, Simon J, Jensen E S, Wang Q, Wang Y, Wang Z, Xu H, Zhang C, Zhang L, Zhang W P, Bedoussac L, van der Werf W. 2020. Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Advances in Agronomy, 160, 1–50.

Sun R, Zheng H, Yin S, Zhang X, You X, Wu H, Suo F, Han K, Cheng Y, Zhang C, Li Y. 2022. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The Science of the Total Environment, 833, 155183.

Tajima R. 2021. Importance of individual root traits to understand crop root system in agronomic and environmental contexts. Breeding Science, 71, 13-19.

Te X, Din A M U, Cui K, Raza M A, Fraz-Ali M, Xiao J. 2023. Interspecific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research291, 108793.

Wang C, Zhou L, Zhang G, Gao J, Peng F, Zhang C, Xu Y, Zhang L, Shao M. 2021. Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems. Field Crops Research263, 108077.

Wang L, Zhou T, Cheng B, Du Y, Qin S, Gao Y, Xu M, Lu J, Liu T, Li S, Liu W, Yang W. 2020. Variable light condition improves root distribution shallowness and P uptake of soybean in maize/soybean relay strip intercropping system. Plants (Basel), 9, 1204.

Wang Y, Qin Y, Chai Q, Feng F, Zhao C, Yu A. 2018. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities. Frontiers in Plant Science, 9, 483.

Wei W, Liu T, Zhang S, Shen L, Wang X, Li L, Zhu Y, Zhang W. 2024. Root spatial distribution and belowground competition in an apple/ryegrass agroforestry system. Agricultural Systems, 215, 103869.

Van der werf W, Zhang L Z, Li C J, Chen P, Chen F, Xu Z, Zhang C C, Gu C F, Bastiaans L, Makowski D, Stomph T. 2021. Comparing performance of crop species mixtures and pure stands. Frontiers of Agricultural Science and Engineering, 8, 481–489. (in Chinese)

Wu Y, Gong W, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. 2022. Dynamic of recovery growth of intercropped soybean after maize harvest in maize-soybean relay strip intercropping system. Food and Energy Security, 11, e350.

Wu Z, Xue B, Wang S, Xing X, Nuo M, Meng X, Wu M, Jiang H, Ma H, Yang M, Wei X, Zhao G, Tian P. 2024. Rice Under dry cultivation-maize intercropping improves soil environment and increases total yield by regulating belowground root growth. Plants (Basel), 13, 2957.

Xie W, Zhang K, Wang X, Zou X, Zhang X, Yu X, Wang Y, Si T. 2022. Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities. BMC Plant Biology, 22, 121.

Yang G, Duan A, Qiu X, Liu Z, Sun J, Zhang J, Wang H. 2010. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 98, 199–212.

Yang H, Xu H S, Zhang W P, Li Z X, Fan H X, Lambers H, Li L. 2022. Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Functional Ecology, 6, 2163–2175.

Yin W, Chen G P, Feng F X, Guo Y, Hu F L, Chen G D, Zhao C, Yu A, Chai Q. 2017. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 204, 42–51.

Yu Y, Stomph T J, Makowski D, van der Werf W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133–144.

Zhang Z M, Dai L X, Ci D W, Yang J S, Ding H, Qin F F, Mu G J. 2016. Effects of planting density and sowing method on growth, development, yield and quality of peanut in saline alkali land. Chinese Journal of Eco-Agriculture, 11, 1328–1338. (in Chinese)

Zhao C, Chai Q, Cao W, Whalen J K, Zhao L, Cai L. 2019. No-tillage reduces competition and enhances compensatory growth of maize (Zea mays L.) intercropped with pea (Pisum sativum L.). Field Crops Research243, 107611.

Zhao J, Bedoussac L, Sun J, Chen W, Li W, Bao X, Werf W V D, Li L. 2023. Competition-recovery and overyielding of maize in intercropping depend on species temporal complementarity and nitrogen supply. Field Crops Research, 292, 108820.

Zheng B, Zhang X, Chen P, Du Q, Zhou Y, Yang H, Wang X, Yang F, Yong T, Yang W. 2021. Improving maize's N uptake and N use efficiency by strengthening roots' absorption capacity when intercropped with legumes. PeerJ, 9, e11658.

Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. 2022. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agricultur, 21, 1755–1771. 

Zhou T, Wang L, Yang H, Gao Y, Liu W, Yang W Y. 2019. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 688, 1069–1080. 

[1] Qi Zhao, Mengjie Cui, Tengda Guo, Lei Shi, Feiyan Qi, Ziqi Sun, Pei Du, Hua Liu, Yu Zhang, Zheng Zheng, Bingyan Huang, Wenzhao Dong, Suoyi Han, Xinyou Zhang. Genome-wide characterization and expression analysis of the cultivated peanut AhPR10 gene family mediating resistance to Aspergillus flavus[J]. >Journal of Integrative Agriculture, 2026, 25(1): 56-67.
[2] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[3] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[4] Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin. Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3757-3771.
[5] Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis[J]. >Journal of Integrative Agriculture, 2025, 24(1): 339-352.
[6] Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang. Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[7] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[8] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[9] Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang.

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L. [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1494-1506.

[10] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[11] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[12] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
[13] ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen. Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1755-1771.
[14] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
[15] ZHAO Shi-cheng, LÜ Ji-long, XU Xin-peng, LIN Xiao-mao, Luiz Moro ROSSO, QIU Shao-jun, Ignacio CIAMPITTI, HE Ping . Peanut yield, nutrient uptake and nutrient requirements in different regions of China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2502-2511.
No Suggested Reading articles found!