|
Adolf V I, Jacobsen S E, Shabala S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43–54.
Chapman H D, Parker F. 1961. Methods of analysis for soil, plant, and water. Journal of Plant Nutrition, 22, 121–128.
Chen G, Kong X, Gan Y, Zhang R, Feng F, Yu A, Zhao C, Wan S, Chai Q. 2018. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping. Scientific Reports, 8, 10494.
Chen X, Chen Y, Zhang W, Zhang W, Wang H, Zhou Q. 2023. Response characteristics of root to moisture change at seedling stage of Kengyilia hirsuta. Frontiers in Plant Science, 13, 1052791.
Christina M, Chevalier L, Viaud P, Schwartz M, Chetty J, Ripoche A, Versini A, Jourdan C, Auzoux S, Mansuy A. 2025. Intercropping and weed cover reduce sugarcane roots colonization in plant crops as a result of spatial root distribution and the co-occurrence of neighboring plant species. Plant and Soil, 506,39–55.
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Gougerdchi V, Hamedpour-Darabi M, Bagheri N, Sharma R, Vetukuri R R, Astatkie T, Dell B. 2024. Quinoa: A promising crop for resolving the bottleneck of cultivation in soils affected by multPMMe environmental abiotic stresses. Plants (Basel), 13, 2117.
Dhima K V, Lithourgidis A S, Vasilakoglou I B, Dordas C A. 2007. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100, 249–256.
Dick W A, Cheng L, Wang P. 2000. Soil acid and alkaline phosphtase activity as PH ajustment indicators. Soil Biology and Biochemistry, 32, 1915–1919.
Dong H Z, Kong X Q, Luo Z, Li W J, Xin C S. 2010. Unequal salt distribution in the root zone increases growth and yield of cotton. European Journal of Agronomy, 33, 285–292.
Dong Q, Zhao X, Sun Y, Zhou D, Lan G, Pu J, Feng C, Zhang H, Shi X, Liu X, Zhang J, Sun Z, Yu H. 2024. Border row effects improved the spatial distributions of maize and peanut roots in an intercropping system, associated with improved yield. Frontiers in Plant Science, 15, 1414844.
Engbersen N, Stefan L, Brooker RW, Schöb C. 2022. Using plant traits to understand the contribution of biodiversity effects to annual crop community productivity. Ecological Applications, 32, e02479.
Fu Z, Chen P, Zhang X, Du Q, Zheng B, Yang H, Luo K, Lin P, Li Y, Pu T, Wu Y, Wang X, Yang F, Liu W, Song C, Yang W, Yong T. 2023. Maize-legume intercropping achieves yield advantages by improving leaf functions and dry matter partition. BMC Plant Biology, 23, 438.
Gebre M G, Earl H J. 2021. Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 12, 581127.
Guerchi A, Mnafgui W, Jabri C, Merghni M, Sifaoui K, Mahjoub A, Ludidi N, Badri M. 2024. Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions. BMC Plant Biology, 24, 158.
Hassan A, Dresbøll D B, Rasmussen C R, Lyhne-Kjrbye A, Nicolaisen M H, Stokholm M S, Thorup-Kristensen K. 2019. Root distribution in intercropping systems–a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 67, 15–28.
Hu F L, Gan Y T, Cui H Y, Zhao C, Feng F X, Yin W, Chai Q. 2016. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. European Journal of Agronomy, 74, 9–17.
Hu S, Liu L, Zuo S, Ali M, Wang Z. 2020. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. Journal of Cleaner Production, 266, 121991.
Karlova R, Boer D, Hayes S, Testerink C. 2021. Root plasticity under abiotic stress. Plant Physiology, 187, 1057–1070.
Li C J, Hoffland E, Kuyper T, Yu Y, Li H G, Zhang C C, Zhang F S, van der Werf W. 2020. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 113, 125987.
Li L, Sun J, Zhang F, Guo T, Bao X, Smith F A, Smith S E. 2006. Root distribution and interactions between intercropped species. Oecologia, 147, 280–290.
Li L, Zhang L Z, Zhang F S. 2013. Crop mixtures and the mechanisms of over yielding. In: Levin S A, ed., Encyclopedia of Biodiversity, 2nd ed. Waltham, MA: Academic Press. pp. 382–395.
Liang J, Shi W. 2021. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Research, 262, 108027.
Liang X Y, Fu R, Gu Y Y, Yi K H, Li M, Chen C J, Zhang H Y, Li J L, Ma L, Song Y J, Wang X Y, Zhang J L, Wan S B, Zhang H. 2025. Quinoa-peanut relay intercropping promotes peanut productivity through the temporal optimization of soil physicochemical properties and microbial community composition in saline soil. Plants, 14, 2102.
Liu X Z, Manevski K, Liu F, Andersen M N. 2022. Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes. Agricultural Water Management, 273, 107905.
Liu Y X, Sun J H, Zhang F F, Li L. 2020. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 447, 39–53.
Luo K, Yuan X, Zuo J, Xue Y, Zhang K, Chen P, Li Y, Lin P, Wang X, Yang W, Flexas J, Yong T. 2024. Light recovery after maize harvesting promotes soybean flowering in a maize–soybean relay strip intercropping system. Plant Journal, 118, 2188–2201.
Mmolawa K, Or D. 2000. Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 222, 163–190.
Nowak V, Du J, Charrondière U R. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54.
Nwokoro C C, Kreye C, Necpalova M, Adeyemi O, Barthel M, Pypers P, Hauser S, Six J. 2022. Cassava-maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics, and yields of component crops. Field Crops Research, 283, 108550.
Oburger E, Schmidt H, Staudinger C. 2022. Harnessing belowground processes for sustainable intensification of agricultural systems. Plant and Soil, 478, 177–209.
Page A L, Miller R H, Keeney D R. 1982. Methods of Soil Analysis-Chemical and Microbiology Properties. American Society of Agronomy, Madison, WI, USA. p. 1159.
Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha R K, Tanna B, Yadav S, Mishra A, Varshney R K, Siddique K H M. 2022. Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. International Journal of Molecular Sciences, 23, 660.
Peng X, Ren J, Chen P, Yang L, Luo K, Yuan X, Lin P, Fu Z, Li Y, Li Y, Yang W, Yong T. 2024. Effects of soil physicochemical environment on the plasticity of root growth and land productivity in maize soybean relay strip intercropping system. Journal of the Science of Food and Agriculture, 104, 3865–3882.
Qiang B, Fan Z, Tang N, Asad M S, Timbang B C, Ren X L, Chen X L. 2024. Improving the productivity of intercropping through above and below ground separation: A case study on photosynthetic characteristics and root distribution. Industrial Crops and Products, 222(Part1), 15.
Qin F, Xin Z, Wang J, Zhang J, Yang J, Guo F, Tang Z, Ci D. 2024. Peanut production in saline-alkali land of Yellow River Delta: Influence of spatiotemporal changes of meteorological conditions and soil properties. BMC Plant Biology, 24, 1029.
Raza M A, Bin Khalid M H, Zhang X, Feng L Y, Khan I, Hassan M J, Ahmed M, Ansar M, Chen Y K, Fan Y F, Yang F, Yang W. 2019. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 9, 4947.
Raza M A, Din A M U, Zhiqi W, Gul H, Ur Rehman S, Bukhari B, Haider I, Rahman M H U, Liang X, Luo S, El Sabagh A, Qin R, Ma Z M. 2023. Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems. Scientific Reports, 13, 16916.
Ren Y Y, Wang X L, Zhang S Q, Palta J A, Chen Y L. 2017. Influence of spatial arrangement in maize–soybean intercropping on root growth and water use efficiency. Plant and Soil, 415, 131–144.
Rojas W. 2003. Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Reviews International, 19, 9–23.
Shi X, Zhao X, Ren J, Dong J, Zhang H, Dong Q, Jiang C, Zhong C, Zhou Y, Yu H. 2021. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Frontiers in Microbiology, 12, 678250.
Stefan L, Engbersen N, Schöb C. 2022. Rapid transgenerational adaptation in response to intercropping reduces competition. Elife, 11, e77577.
Stomph T J, Dordas C, Baranger A, de Rijk J, Dong B, Evers J, Gu C, Li L, Simon J, Jensen E S, Wang Q, Wang Y, Wang Z, Xu H, Zhang C, Zhang L, Zhang W P, Bedoussac L, van der Werf W. 2020. Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Advances in Agronomy, 160, 1–50.
Sun R, Zheng H, Yin S, Zhang X, You X, Wu H, Suo F, Han K, Cheng Y, Zhang C, Li Y. 2022. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The Science of the Total Environment, 833, 155183.
Tajima R. 2021. Importance of individual root traits to understand crop root system in agronomic and environmental contexts. Breeding Science, 71, 13-19.
Te X, Din A M U, Cui K, Raza M A, Fraz-Ali M, Xiao J. 2023. Interspecific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research, 291, 108793.
Wang C, Zhou L, Zhang G, Gao J, Peng F, Zhang C, Xu Y, Zhang L, Shao M. 2021. Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems. Field Crops Research, 263, 108077.
Wang L, Zhou T, Cheng B, Du Y, Qin S, Gao Y, Xu M, Lu J, Liu T, Li S, Liu W, Yang W. 2020. Variable light condition improves root distribution shallowness and P uptake of soybean in maize/soybean relay strip intercropping system. Plants (Basel), 9, 1204.
Wang Y, Qin Y, Chai Q, Feng F, Zhao C, Yu A. 2018. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities. Frontiers in Plant Science, 9, 483.
Wei W, Liu T, Zhang S, Shen L, Wang X, Li L, Zhu Y, Zhang W. 2024. Root spatial distribution and belowground competition in an apple/ryegrass agroforestry system. Agricultural Systems, 215, 103869.
Van der werf W, Zhang L Z, Li C J, Chen P, Chen F, Xu Z, Zhang C C, Gu C F, Bastiaans L, Makowski D, Stomph T. 2021. Comparing performance of crop species mixtures and pure stands. Frontiers of Agricultural Science and Engineering, 8, 481–489. (in Chinese)
Wu Y, Gong W, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. 2022. Dynamic of recovery growth of intercropped soybean after maize harvest in maize-soybean relay strip intercropping system. Food and Energy Security, 11, e350.
Wu Z, Xue B, Wang S, Xing X, Nuo M, Meng X, Wu M, Jiang H, Ma H, Yang M, Wei X, Zhao G, Tian P. 2024. Rice Under dry cultivation-maize intercropping improves soil environment and increases total yield by regulating belowground root growth. Plants (Basel), 13, 2957.
Xie W, Zhang K, Wang X, Zou X, Zhang X, Yu X, Wang Y, Si T. 2022. Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities. BMC Plant Biology, 22, 121.
Yang G, Duan A, Qiu X, Liu Z, Sun J, Zhang J, Wang H. 2010. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 98, 199–212.
Yang H, Xu H S, Zhang W P, Li Z X, Fan H X, Lambers H, Li L. 2022. Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Functional Ecology, 6, 2163–2175.
Yin W, Chen G P, Feng F X, Guo Y, Hu F L, Chen G D, Zhao C, Yu A, Chai Q. 2017. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 204, 42–51.
Yu Y, Stomph T J, Makowski D, van der Werf W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133–144.
Zhang Z M, Dai L X, Ci D W, Yang J S, Ding H, Qin F F, Mu G J. 2016. Effects of planting density and sowing method on growth, development, yield and quality of peanut in saline alkali land. Chinese Journal of Eco-Agriculture, 11, 1328–1338. (in Chinese)
Zhao C, Chai Q, Cao W, Whalen J K, Zhao L, Cai L. 2019. No-tillage reduces competition and enhances compensatory growth of maize (Zea mays L.) intercropped with pea (Pisum sativum L.). Field Crops Research, 243, 107611.
Zhao J, Bedoussac L, Sun J, Chen W, Li W, Bao X, Werf W V D, Li L. 2023. Competition-recovery and overyielding of maize in intercropping depend on species temporal complementarity and nitrogen supply. Field Crops Research, 292, 108820.
Zheng B, Zhang X, Chen P, Du Q, Zhou Y, Yang H, Wang X, Yang F, Yong T, Yang W. 2021. Improving maize's N uptake and N use efficiency by strengthening roots' absorption capacity when intercropped with legumes. PeerJ, 9, e11658.
Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. 2022. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agricultur, 21, 1755–1771.
Zhou T, Wang L, Yang H, Gao Y, Liu W, Yang W Y. 2019. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 688, 1069–1080.
|