Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Distinct decomposition dynamics of heterogeneous carbon components in cultivated agricultural soils controlled by flexible microbial substrate utilization strategy

Wanqi Wang1, 2, 3*, Xuefeng Zhu1, 3*, Yuzhu Li1, 3, Shuhan Dong1, 2, 3, Yan Liu4, Kaikai Min1, 3, Huijie 5, 6, Wei Zhang1, 3, Hongbo He1, 3#, Xudong Zhang1, 3

1 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Key Laboratory of Conservation Tillage and Ecological Agriculture, Shenyang 110016, China

4 College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China

5 Bayingol Vocational and Technical College, Korla 841000, China

6 Xinjiang Key Laboratory of Sustainable Management of Salinized Land and Regional Agricultural Technology, Korla 841000, China

 Highlights 

l Plant debris dominates SOC mineralization, and microbial necromass controls stability.

l A shift from bacteria to fungi drives carbohydrates-to-lignin decomposition in C-rich soil.

l Actinomycetes dominate lignin and carbohydrates co-metabolism in C-starved habitats.

l Flexible substrate utilization strategy regulates the decomposition of heterogeneous SOC components.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤有机碳的积累与稳定是维陆地碳汇与生态系统功能的关键。保护性耕作有东北农田退化土壤有机的积累。然而,不同有机组分对培肥土壤有机稳定性的贡献以及微生物调控机制并不清楚。本研究利用免耕土壤(对照)和经过12年全量秸秆还田的土壤进行室内矿化培养试验并定期取样。通过测定培养过程中土壤木质素、中性糖和氨基糖的含量变化,并同步分析磷脂脂肪酸和胞外酶活性的动态特征,从而明确微生物的响应及其土壤有机碳矿化的调控作用研究结果表明,培养1年后,培肥土壤有机碳下降比例显著低于对照12.3 vs. 14.5%,表明长期秸秆归还提高了土壤有机质的稳定性。在培养过程中,木质素的下降幅度(20.8-26.3%)大于土壤有机碳和氨基糖(10.6-12.3%),表明植物残体分解主导土壤有机碳矿化,微生物残体主要贡献于土壤有机质的稳定性。此外,中性糖和木质素的分解动态受可利用性的显著影响。在对照土壤中,中性糖和木质素分解动态相似且总体下降幅度无显著差异,表明两种生物化学稳定性不同的组分存在共代谢过程,该过程主要和放线菌丰度增加直接相关在培肥土壤中,中性糖优先木质素被微生物分解利用,这种底物选择性不仅受到碳水化合物水解酶的调控,也与微生物群落从细菌主导向真菌贡献增加的转变密切相关。综上,本研究揭示了土壤肥力提高对微生物底物利用策略的影响及其对土壤有机质分解过程的调控作用,并明确了不同组分在土壤有机碳周转与稳定化中的差异性贡献。



Abstract  

Improving soil organic matter (SOM) maintenance is crucial for terrestrial carbon (C) sequestration and ecosystem functioning. Conservation tillage favors SOM pool buildup; however, it remains unclear how the decomposition of heterogeneous components is manipulated by microbial substrate utilization strategy from the view of SOM stability. Here, a one-year microcosm incubation was conducted using surface soildeveloped under 12 years of conservation tillage (high-C soil) and maize residue removal (low-C soil). Temporal changes in lignin phenols, neutral sugars, and amino sugars in the soil were monitored along with microbial phospholipid fatty acids (PLFAs) and enzyme activities. Throughout incubation, lignin phenols declined more (20.8-26.3%) than the SOM (12.3-14.5%) and amino sugars (10.6-12.3%), highlighting the key role of plant debris in SOM mineralization, and complementarily, the greater contribution of microbial necromass to SOM stabilization. Moreover, the decomposition dynamics of neutral sugars and lignin were strongly influenced by C availability. In the low-C soil, these two types of compounds decomposed with similar temporal patterns and extents, and such substrate co-metabolism was dominantly mediated by actinomycetes. In contrast, in the high-C soil, a lower oxidases-to-carbohydrolases ratio regulated the sequential decomposition of labile neutral sugars followed by recalcitrant lignin. Such microbial substrate selectivity was associated with a shift in microbial community from bacterial dominance toward increased fungal contribution. Overall, our findings underscore the significant interplay between soil C availability and flexible microbial substrate utilization strategy in regulating decomposition of heterogeneous SOM components, as well as their distinct contributions in SOM turnover and stabilization. 

Keywords:  SOM decomposition       microbial necromass       lignin phenols       carbohydrates       microbial community       microbial substrate utilization strategy  
Online: 31 December 2025  
Fund: 

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28010301), the National Natural Science Foundation of China (U22A20610), the Key Research and Development Program of Xinjiang Uygur Autonomous Region (2025B04046), the Grassroots Science and Technology Backbone Talents under the Tianshan Talents Initiative of the Xinjiang Uygur Autonomous Region (2024TSYCJC0041), the Outstanding Young Scientist Program of the Institute of Applied Ecology, Chinese Academy of Sciences (2023000153), and the Natural Science Foundation of Shenyang City (23-503-6-19).

About author:  Wangqi Wang, E-mail: wangwanqi20@mails.ucas.ac.cn; Xuefeng Zhu, E-mail: zhuxuefeng@iae.ac.cn; #Correspondence Hongbo He, E-mail: hehongbo@iae.ac.cn *These authors contributed equally to this study.

Cite this article: 

Wanqi Wang, Xuefeng Zhu, Yuzhu Li, , Shuhan Dong, Yan Liu, Kaikai Min, Huijie Lü, Wei Zhang, Hongbo He, Xudong Zhang. 2025. Distinct decomposition dynamics of heterogeneous carbon components in cultivated agricultural soils controlled by flexible microbial substrate utilization strategy. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.063

Bahri H, Rasse D P, Rumpel C, Dignac M F, Mariotti A. 2008. Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biology and Biochemistry, 40, 1916-1922.

Bao Y Y, Dolfing J, Guo Z Y, Chen R R, Wu M, Li Z P, Lin X G, Feng Y Z. 2021. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome, 9, 84.

Barre P, Quenea K, Vidal A, Cecillon L, Christensen B T, Katterer T, Macdonald A, Petit L, Plante A F, van Oort F, Chenu C. 2018. Microbial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soils. Biogeochemistry, 140, 81-92.

de Boer W, Folman L B, Summerbell R C, Boddy L. 2005. Living in a fungal world: Impact of fungi on soil bacterial niche development. Fems Microbiology Reviews, 29, 795-811.

Bossio D A, Scow K M, Gunapala N, Graham K J. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1-12.

Brouns K, Keuskamp J A, Potkamp G, Verhoeven J T A, Hefting M M. 2016. Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry, 95, 144-155.

Cao T T, Luo Y C, Shi M, Tian X J, Kuzyakov Y. 2024. Microbial interactions for nutrient acquisition in soil: Miners, scavengers, and carriers. Soil Biology & Biochemistry, 188, 109215.

Chantigny M H, Angers D A, Beauchamp C J. 2000. Decomposition of de-inking paper sludge in agricultural soils as characterized by carbohydrate analysis. Soil Biology and Biochemistry, 32, 1561-1570.

Chen Y J, Leung P M, Wood J L, Bay S K, Hugenholtz P, Kessler A J, Shelley G, Waite D W, Franks A E, Cook P L M, Greening C. 2021. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. The ISME Journal, 15, 2986-3004.

Cotrufo M F, Soong J L, Horton A J, Campbell E E, Haddix M L, Wall D H, Parton A J. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.

Cotrufo M F, Wallenstein M D, Boot C M, Denef K, Paul E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.

Dini-Andreote F, Stegen J C, van Elsas J D, Salles J F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112, E1326-E1332.

Duran K, Kohlstedt M, van Erven G, Klostermann C E, America A H P, Bakx E, Baars J J P, Gorissen A, de Visser R, de Vries R P, Wittmann C, Comans R N J, Kuyper T W, Kabel M A. 2024. From 13C-lignin to 13C-mycelium: Agaricus bisporus uses polymeric lignin as a carbon source. Science Advances, 10, eadl3419.

German D P, Weintraub M N, Grandy A S, Lauber C L, Rinkes Z L, Allison S D. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43, 1387-1397.

Grandy A S, Neff J C. 2008. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment, 404, 297-307.

Gunina A, Kuzyakov Y. 2015. Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology and Biochemistry, 90, 87-100.

Gunina A, Kuzyakov Y. 2022. From energy to (soil organic) matter. Global Change Biology, 28, 2169-2182.

Hall S J, Huang W J, Timokhin V I, Hammel K E. 2020. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology, 101, e03113.

Hedges J I, Ertel J R. 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry, 54, 174-178.

Huang R L, Crowther T W, Sui Y Y, Sun B, Liang Y T. 2021. High stability and metabolic capacity of bacterial community promote the rapid reduction of easily decomposing carbon in soil. Communications Biology, 4, 1376.

Huang W J, Yu W J, Yi B, Raman E, Yang J, Hammel K E, Timokhin V I, Lu C Q, Howe A, Weintraub-Leff S R, Hall S J. 2023. Contrasting geochemical and fungal controls on decomposition of lignin and soil carbon at continental scale. Nature Communications, 14, 2227.

Jansson J K, Hofmockel K S. 2018. The soil microbiome - from metagenomics to metaphenomics. Current Opinion in Microbiology, 43, 162-168.

Joergensen R G. 2022. Phospholipid fatty acids in soil-drawbacks and future prospects. Biology and Fertility of Soils, 58, 1-6.

Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85, 9-24.

Köegel-Knabner I. 1986. Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biology and Biochemistry, 18, 589-594.

Köegel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139-162.

Köegel-Knabner I. 2017. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biology and Biochemistry, 105, A3-A8.

Köegel-Knabner I, Bochter R. 1985. Characterization of lignin in forest humus layers by highperformance liquid chromatography of cupric oxide oxidation products. Soil Biology and Biochemistry, 17, 637-640.

Köegel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P. 2008. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82.

Kopittke P M, Hernandez-Soriano M C, Dalal R C, Finn D, Menzies N W, Hoeschen C, Mueller C W. 2018. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Global Change Biology, 24, 1762-1770.

Kuzyakov Y, Friedel J K, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485-1498.

Lehmann J, Hansel C M, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel J P, Torn M S, Wieder W R, Köegel-Knabner I. 2020. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13, 529-534.

Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature, 528, 60-68.

Li Y, Zhang W, Li J, Zhou F, Liang X N, Zhu X F, He H B, Zhang X D. 2023. Complementation between microbial necromass and plant debris governs the long-term build-up of the soil organic carbon pool in conservation agriculture. Soil Biology and Biochemistry, 178, 108963.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.

Liu D, Song C C, Xin Z H, Fang C, Liu Z H, Xu Y P. 2023. Agricultural management strategies for balancing yield increase, carbon sequestration, and emission reduction after straw return for three major grain crops in China: A meta-analysis. Journal of Environmental Management, 340, 117965.

Liu Y R, Delgado-Baquerizo M, Wang J T, Hu H W, Yang Z M, He J Z. 2018. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry, 118, 35-41.

López-Mondéjar R, Tláskalc V, Větrovský T, Štursová M, Toscan R, da Rocha U N, Baldrian P. 2020. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biology and Biochemistry, 148, 107875.

Louca S, Polz M F, Mazel F, Albright M B N, Huber J A, O'Connor M I, Ackermann M, Hahn A S, Srivastava D S, Crowe S A, Doebeli M, Parfrey L W. 2018. Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936-943.

Malik A A, Puissant J, Goodall T, Allison S D, Griffiths R I. 2019. Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biology and Biochemistry, 132, 36-39.

Martens D A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry, 32, 361-369.

Martens D A, Loeffelmann K L. 2002. Improved accounting of carbohydrate carbon from plants and soils. Soil Biology and Biochemistry, 34, 1393-1399.

Martin J P, Haider K, Kassim G. 1980. Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Science Society of America Journal, 44, 1250-1255.

McNichol S M, Sanchez-Quete F, Loeb S K, Teske A P, Shah Walter S R, Mahmoudi N. 2024. Dynamics of carbon substrate competition among heterotrophic microorganisms. The ISME Journal, 18, wrae018.

Melillo J M, Aber J D, Muratore J F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.

Monod J. 1949. The growth of bacterial cultures. Annual Review of Microbiology, 3, 371-394.

Oades J M. 1984. Soil organic matter and structural stability: Mechanisms and

implications for management. Plant and Soil, 76, 319-337.

Paul E A. 2016. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109-126.

Reischke S, Rousk J, Baath E. 2014. The effects of glucose loading rates on bacterial and fungal growth in soil. Soil Biology and Biochemistry, 70, 88-95.

Schimel J P, Schaeffer S M. 2012. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, 348.

Schimel J P, Weintraub M N. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 35, 549-563.

Schmidt J, Schulz E, Michalzik B, Buscot F, Gutknecht J L M. 2015. Carbon input and crop-related changes in microbial biomarker levels strongly affect the turnover and composition of soil organic carbon. Soil Biology and Biochemistry, 85, 39-50.

Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Koegel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.

Soil Survey Staff. 2022. Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Strukelj M, Brais S, Mazerolle M J, Pare D, Drapeau P. 2018. Decomposition patterns of foliar litter and deadwood in managed and unmanaged stands: A 13-Year Experiment in boreal mixedwoods. Ecosystems, 21, 68-84.

Teng J L, Hou R X, Dungait J A J, Zhou G Y, Kuzyakov Y, Zhang J B, Tian J, Cui Z L, Zhang F S, Delgado-Baquerizo M. 2024. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nature Communications, 15, 8785.

Thevenot M, Dignac M F, Rumpel C. 2010. Fate of lignins in soils: A review. Soil Biology and Biochemistry, 42, 1200-1211.

Trumbore S. 2000. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411. 

Wang X X, Zhang W, Liu Y, Jia Z J, Li H, Yang Y F, Wang D M, He H B, Zhang X D. 2021. Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biology and Biochemistry, 153, 107970.

Wang X X, Zhang W, Zhou F, Liu Y, He H B, Zhang X D. 2020. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biology and Biochemistry, 142107723.

Wang Z W, Ma S Q, Hu Y, Chen Y C, Jiang H M, Duan B L, Lu X Y. 2022. Links between chemical composition of soil organic matter and soil enzyme activity in alpine grassland ecosystems of the Tibetan Plateau. Catena, 218, 106565.

Willers C, van Rensburg P J J, Claassens S. 2015. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology, 119, 1207-1218.

Yang S Y, Jansen B, Absalah S, Kalbitz K, Castro F O C, Cammeraat E L H. 2022. Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: A study in tropical alpine grasslands. Soil & Tillage Research, 215, 105203.

Zhang W, He H B, Zhang X D. 2007. Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates. Soil Biology and Biochemistry, 39, 2665-2669.

Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28, 1201-1206.

Zhang X D, Amelung W, Yuan Y, Samson-Liebig S, Brown L, Zech W. 1999. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Applied Soil Ecology, 11, 271-275.

[1] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[2] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[3] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[4] Xiangxia Yang, Tingting Chen, Libo Xiang, Limin Liu, Mi Wei. Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(2): 769-785.
[5] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[6] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[7] Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu. The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3592-3609.
[8] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[9] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[10] LI Wei-hua, CHEN Peng, WANG Yu-zhu, LIU Qi-zhi. Characterization of the microbial community response to replant diseases in peach orchards[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1082-1092.
[11] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[12] WANG Dong, XI Yue, SHI Xiao-yan, GUO Chao-li, ZHONG Yu-jie, SONG Chao, GUAN Yu, HUANG Lu, YANG Qi-feng, LI Feng-min. Effects of residual plastic film on crop yield and soil fertility in a dryland farming system[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3783-3791.
[13] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
[14] Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2134-2144.
[15] LIU Han-wen, ZHANG Xiao-ke, ZHANG Gui-zong, KOU Xin-chang, LIANG Wen-ju. Partial organic substitution weakens the negative effect of chemical fertilizer on soil micro-food webs[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3037-3050.
No Suggested Reading articles found!